

Year 12 Trial Exam Paper

2015

MATHEMATICAL METHODS (CAS)

Written examination 1

Reading time: 15 minutes Writing time: 1 hour

STUDENT NAME:

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring the following items into the examination: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring blank sheets of paper, notes of any kind or white out liquid/tape into the examination.
- Calculators are NOT permitted in this examination.

Materials provided

- The question and answer book of 15 pages with a separate sheet of miscellaneous formulas.
- Working space is provided throughout this book.

Instructions

- Write your **name** in the box provided.
- Remove the formula sheet during reading time.
- You must answer the questions in English.

Students are NOT permitted to bring mobile phones or any other unauthorised electronic devices into the examination.

This trial examination produced by Insight Publications is NOT an official VCAA paper for the 2015 Mathematical Methods (CAS) written examination 1.

The Publishers assume no legal liability for the opinions, ideas or statements contained in this trial exam.

This examination paper is licensed to be printed, photocopied or placed on the school intranet and used only within the confines of the purchasing school for examining their students. No trial examination or part thereof may be issued or passed on to any other party including other schools, practising or non-practising teachers, tutors, parents, websites or publishing agencies without the written consent of Insight Publications.

Instructions

Answer all questions in the spaces provided.

Please provide **exact** answers to all questions where a numerical answer is required, unless otherwise stated.

In questions where more than one mark is available, show appropriate working.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1 (7 marks)

a. Find	$\frac{d}{dx} \left(e^x \sin(2x) \right)$
---------	--

2 marks

b.	For $f(x) = e^{\cos(x)}$, f	find	f'	$\left(\frac{\pi}{2}\right)$	•
----	------------------------------	------	----	------------------------------	---

2 marks

с.	The average value of the function $f:\left(-\frac{3}{2},\infty\right) \to R$, $f(x) = \frac{1}{3+2x}$	
	over the interval $[1, k]$ is $\frac{1}{10} \log_e(3)$. Find the value of k .	
		3 marks

Question	2	(2	marks))

Consider these simultaneous linear equations.

$$ax - 2y = a$$

$$5x + y = 7$$

Find the value(s) of a for which the equations have a unique solution.			

CONTINUES OVER PAGE

Question 3 (4 marks)

For the function $f:(2, \infty) \to R$, $f(x) = \frac{1}{3} \log_e \left(\frac{x-2}{3}\right)$

a. Find the rule for the inverse function, f^{-1} .

2 marks

b. Sketch the graph of $y = f^{-1}(f(x))$ on the axes below.

1 mark

c.	The function	f(x)	undergoes a	transformation,	defined by	the matrix
----	--------------	------	-------------	-----------------	------------	------------

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

State the new equation.	1 mark

Question 4 (4 marks)

The graph of $y = \sin(x)$ undergoes the following transformations:

- a dilation of factor 2 from the *x*-axis
- a translation of +3 units up
- **a.** Sketch the transformed graph over the domain $[-\pi, \pi]$ on the axes below.

2 marks

b.	Find the equation of the normal to the transformed graph in part a when $x = 0$).
		2 mark

Question 5 (3 marks)

Max drinks either cola or lemonade at morning tea break. If he has cola one morning, the probability he has cola the next is 0.3. If he has lemonade one morning, the probability he has lemonade the next is 0.4 and this is represented in the following transition matrix.

$$\begin{array}{cc} C_i & L_i \\ C_{i+1} \begin{bmatrix} 0.3 & 0.6 \\ 0.7 & 0.4 \end{bmatrix} \end{array}$$

What is the probability	y that he drinks lemonade in the long term?	

Question 6 (5 marks)

Consider the graph of $y = \frac{1}{2} \log_e(x - k)$. *OABC* is a rectangle, as shown.

a. Show that the inverse of $y = \frac{1}{2} \log_e(x - k)$ is $y = e^{2x} + k$.

1 mark

•	Hence, find k when the shaded and unshaded regions of the rectangle are equal in area.	
		4 marks
	·	

Question 7 (4 marks)

	2 — —
Find the average rate of change of the function of the functin of the function of the function of the function of the function	
Find the average rate of change of the function $y = 2\sin(3x)$ over the	
interval $\left[\frac{\pi}{4}, \frac{\pi}{3}\right]$.	
[4 3]	
	2

Question 8 (5 marks)

Solve the following for x.

===08(=================================	a.	$2\log_8(x+1) + \log_8 4 = 1$
---	----	-------------------------------

2 marks

b.	$e^{2x}-8e^{2x}$	$e^x + 7 = 0$
~•		

3 marks

Question 9 (3 marks)

The random variable X is normally distributed with mean 60 and standard deviation 15. The random variable Z is normally distributed with mean 0 and standard deviation 1.

If Pr(Z < -2) = 0.0228, find

$Pr(X < 60 \mid X > 30)$ 2 r	Pr(X < 30)	1
	$Pr(X < 60 \mid X > 30)$	2 r

Question 10 (3 marks)
Consider the function $f(x) = (x-a)(x-b)^3$, where a and b are positive constants with $a > b$.
Find the values of a and b if the stationary points occur when $x = 3$ and $x = 4$.

END OF QUESTION AND ANSWER BOOK