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QUESTION 1 

For the function f (x) = ex sin (2x), find f ′(x).

2 marks

QUESTION 2 

a	 For the function f (x) = x2 loge (x), find f ′(x).

2 marks

b	 Hence find f ′(2). 

1 mark
(Total: 3 marks)
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Specific instructions to students
•	 Answer all of the questions in the spaces 

provided.
•	 Show all workings in questions where more 

than one mark is available. 
•	 An exact value must be provided in questions 

where a numerical answer is required, unless 
otherwise specified.

QUESTION 3 

a	 For the function f (x) = 
log ( )e
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, find f ′(x).

3 marks

b	 Hence find f ′(1). 

1 mark
(Total: 4 marks)

QUESTION 4

a	 If 
dy
dx

 = e3x, find an expression for y.

2 marks

b	 If 
dy
dx

 = e3x and y = 1 when x = 0, find y.

2 marks
(Total: 4 marks)

f (x) = ex sin (2x)

Using the product rule,

f ′(x) = ex sin (2x) + 2ex cos (2x)

f (x) = x2 loge (x) 

Using the product rule,

f ′(x) = 2x loge (x) + x2 × 
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QUESTION 5 

Evaluate x dx2

0

1

∫ .

2 marks

QUESTION 6 

Evaluate 2 3
0

6 cos( )x dx
π

∫ .

2 marks

QUESTION 7

a	 What type of stationary point is found at x = a 
using the information

	 x < a, f ′(x) < 0

	 x = a, f ′(x) = 0

	 x > a, f ′(x) > 0?

1 mark

b	 What type of stationary point is found at x = b 
using the information

	 x < b, f ′(x) > 0

	 x = b, f ′(x) = 0 

	 x > b, f ′(x) < 0?

1 mark

c	 What type of stationary point is found at x = c using 
the information

	 x < c, f’(x) > 0

	 x = c, f’(x) = 0 

	 x > c, f’(x) > 0?

1 mark
(Total: 3 marks)
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A local minimum at x = a.
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A stationary point of inflection at x = c.
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QUESTION 8 

a	 Find the x-coordinates for the stationary points of 

the graph of f (x) = 
1
2

x4 – x2 + 3.

2 marks

b	 Given that there are no x-intercepts on the graph, 
sketch the graph of f (x), labelling the coordinates of 
the stationary points. 

2 marks

c	 State the intervals over which the graph is strictly 
increasing.

1 mark

d	 State the intervals over which the graph is strictly 
decreasing. 

1 mark
(Total: 6 marks)

QUESTION 9 

It is known that f x dx( )
1

3
1∫ =

a	 Evaluate f x dx( ) +( )∫ 1
1

3
.

2 marks

b	 Evaluate − +( )∫ 2 3
3

1
f x dx( ) .

2 marks
(Total: 4 marks)
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x ∈[–1, 0] ∪ [1, ∞ )

x ∈(–∞, –1] ∪ [0, 1]
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                              = (–2 × (–1)) + [3x]3
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                              = 2 + 3 – 9

                              = –4

f (x) = 
1
2

x4 – x2 + 3

f ′(x) = 2x3 – 2x = 0 for stationary points.

⇒ 2x(x2 – 1) = 0

This gives x = 0, x = 1, x = –1


