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QUESTION 1 

Let f (x) = (x2 + x) loge (x + 1). Find
 f ′(x).

2 marks

QUESTION 2 

Let y = 
e
x

x2 1

2

−

−cos( )π
. Find 

dy
dx

 at x = π

2 marks

QUESTION 3

Let Pr(A) = 0.1, Pr(B) = 0.3

a	 If A and B are independent events, find Pr(A ∪ B). 

1 mark

f (x) = (x2 + x) loge (x + 1)

f ′(x) �= loge (x + 1) × (2x + 1) + (x2 + x) × 
x

1
1+

 

= (2x + 1) loge (x + 1) + 
x x

x
( 1)

1
+

+
 

= (2x + 1) loge (x + 1) + x

y = 
e
xcos(2 )

x 12

π−

−

dy
dx

 = 
x xe x e

x
cos(2 ) 2 2sin(2 )

cos (2 )

x x1 1

2

2 2

π π
π

− × + − ×
−

− −

At x = π 

dy
dx

 �= 
e ecos( ) 2 2sin( )
cos ( )

1 1

2

2 2

π π π
π

× + ×π π− −

 

= 
e1 2 0
1

12

π− × −π −

 

= e2 12

π− π −

Pr(A ∪ B) = Pr(A) + Pr(B) – Pr(A ∩ B)

And Pr(A ∩ B) = Pr(A) × Pr(B) = 0.1 × 0.3 = 0.03

Pr(A ∪ B) �= 0.1 + 0.3 – 0.03 

= 0.37
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b	 A is the event of winning a particularly difficult football game. B is the event of it being wet on the day of the 
game. If A and B are no longer independent events, the probability of winning the game on a wet day reduces 
to 0.05. Find the probability that, if the game is won, it is a wet day.

3 marks
(Total: 4 marks)

QUESTION 4 

A probability density function is defined below.

=
+ − ≤ ≤





f x

x
k x

( ) 8
, 1 1,

0, otherwise,
 where k ∈R

a	 Find k. 

2 marks

Pr(A|B) = 0.05

Pr(A|B) = 
A B
B

Pr( )
Pr( )

∩

So 0.05 = A B
B

Pr( )
Pr( )

∩

⇒ Pr(A ∩ B) = 0.05 × 0.3 = 0.015

Now Pr(B|A) �= 
A B
A

Pr( )
Pr( )

∩
 

= 0.015
0.1

 

= 0.15

The probability that, if the game is won, it is a wet day is 0.15.

f x
x

k x
( ) 8

, 1 1,

0, otherwise,
=

+ − ≤ ≤




 where k ∈R

For a PDF, 
x

k dx
81

1

∫ +



−

 = 1

x
kx

16

2

1

1

+







−

 = 1

k k
1
16

1
16

+



 − −



  = 1

2k = 1

k = 1
2
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b	 Find the mean of the probability density function. 

2 marks

c	 Find the median of the probability density function. 

2 marks
(Total: 6 marks)

QUESTION 5

a	 Find 
d
dx

x xe
2 log ( )( ).

1 mark

Mean = E(X) �= x
x

k dx
81

1

∫ +



−

	 where k = 
1
2

 

= 
x x

dx
8 2

2

1

1

∫ +




−

 

= 
x x
24 4

3 2

1

1

+







−

 

= 1
24

1
4

1
24

1
4

+



 − − +




 

= 1
12

x
dx

8
1
2

m

1∫ +



−

 = 
1
2
 where m is the median

x x
16 2

m2

1

+







−

 = 
1
2

m m
16 2

1
16

1
2

2

+






− −



  = 

1
2

m m
16 2

7
16

2

+ +  = 
1
2

m m82 +  + 7 = 8

m m82 +  – 1 = 0

m = 
8 64 4

2
− ± +

 = 
8 2 17

2
− ±

 = –4 17±

Select the m value that is within the domain.

m = –4 + 17

d
dx

x xlog ( )e
2( ) �= 2x loge (x) + x

2 × 
x
1

 

= 2x loge (x) + x
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b	 Hence find 4
1

2
x x dxelog ( )∫ .

3 marks
(Total: 4 marks)

QUESTION 6

a	 Show that P(x) = 3x3 – x2 – 2 has only one real factor. 

2 marks

d
dx

x xlog ( )e
2( ) = 2x loge (x) + x

⇒ x x x dx2 log ( )e∫ ( )+  = x2 loge (x) ( + c)

⇒ x x x dx2 log ( )e1

2

∫ ( )+  = [x2 loge (x)]1
2 

x x dx x dx2 log ( )e1

2

1

2

∫ ∫( ) +  = [x2 loge (x)]1
2

x x dx2 log ( )e1

2

∫ ( )  = [x2 loge (x)]1
2 – x dx

1

2

∫

x x dx4 log ( )e1

2

∫ ( )  �= 2[x2 loge (x)]1
2 – 2 x dx

1

2

∫  

= 2(4 loge (2)) – 2
x
2

2

1

2






  

= 8 loge (2) – (4 – 1)

x x dx4 log ( )e1

2

∫ ( )  = 8 loge (2) – 3

P(x) = 3x3 – x2 – 2

P(1) = 3 – 1 – 2 = 0, so x – 1 is a factor.

By synthetic division

3 –1 0 –2

1 3 2 2

3 2 2 0

The quadratic factor is (3x2 + 2x + 2).

∆ = 22 – 4 × 3 × 2 = –20

So there are no real factors for the quadratic.

∴ (x – 1) is the only real factor.
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b	 Find the equation of the tangent to the curve y = 3x3 – x2 – 2 at x = 1. 

2 marks

c	 Hence, find the coordinates of the point where the tangent to the curve y = 3x3 – x2 – 2 at x = 1 intersects again 
with the curve y = 3x3 – x2 – 2.

2 marks
(Total: 6 marks)

y = 3x3 – x2 – 2 

So 
dy
dx

 = 9x2 – 2x 

Gradient at x = 1 is 7.

Use the equation of a line y − y1 = m(x − x1), where m = gradient of curve.

Using point (1, 0),

y  − 0 = 7(x − 1)

The equation of the tangent is

y  = 7x − 7

Upper curve: y = 3x3 – x2 – 2

Lower curve: y = 7x – 7

Point of intersection

Equate 3x3 – x2 – 2 = 7x – 7

3x3 – x2 – 7x + 5 = 0

We already know that one point of intersection is (1, 0).

By synthetic division

3 –1 –7 5

1 3 2 –5

3 2 –5 0

The quadratic factor is (3x2 + 2x – 5).

So y = (x – 1)(x – 1)(3x + 5)

2nd point of intersection is 5
3
,

56
3

− −




.

Alternate solution

We know that x = 1 meets at the tangent to the curve, so we expect a repeated factor.

So y �= (x – 1)2(linear factor) 

= (x2 – 2x + 1)(linear factor)

By observation of y = 3x3 – x2 – 7x + 5, the linear factor must be (3x + 5).

The 2nd point of intersection is 5
3
,

56
3

− −




.

y = 3x3 – x3 – 2

y = 7x – 7

(1, 0)O
x

y
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QUESTION 7 

Consider the graph of y = 2 sin  x −





π
2

 + 1.

a	 Find the x-intercepts of the graph for the domain x ∈[0, 2π].

2 marks

b	 Hence find the x-intercepts of the graph of y = 2 sin  x −





π
2

 + 1 after it is translated 
π
4
 units in the positive 

direction of the x-axis and then reflected over the x-axis.

2 marks
(Total: 4 marks)

Solve 2 sin  x
2
π

−




 + 1 = 0 for x ∈ [0, 2 π].

2 sin  x
2
π

−




 = –1 ⇒ sin  x

2
π

−




 = – 

1
2

 

Reference angle = 
6
π

x
2
π

−




 �= 

6
,

6
, 2

6
π π π π π

− + −  

= 
6
,
7
6

,
11
6

π π π
−

x �= 
6 2

,
7
6 2

,
11
6 2

π π π π π π
− + + +  

= 
2
6

,
10
6

,
14
6

π π π
 

= 
3
,
5
3

,
7
3

π π π
 where 

7
3
π
 is now out of the domain [0, 2π] 

x = 
3
,
5
3

π π

x = 
3
,
5
3

π π

Translated 
4
π
 units in the positive direction of the x-axis:

x �= 
3 4

,
5
3 4

π π π π
+ +  

= 
7
12

,
23
12

π π

Reflected over the x-axis, intercepts remain the same.

x = 
7
12

,
23
12

π π
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QUESTION 8 

Sam finds that, on average, he solves an equation correctly 7 out of 10 times. In a particular examination, Sam is 
faced with 4 such equations. What is the probability that Sam will solve at least one of these equations correctly?

2 marks

QUESTION 9

The curve y = 2x2 + 3 for x ≥ 0 is added to the curve y = px2 – 6 for x < 2 to create the function f (x) = 2x2 + 3 + px2 – 6 
where p is a real constant.

a	 State the domain for which f (x) exists.

1 mark

b	 Find the value(s) of p for which the inverse, f –1 (x), exists.

2 marks
(Total: 3 marks)

Bi(n, p) = Bi(4, 0.7)

Pr(X ≥ 1) = 1 – Pr(X = 0)

1 – Pr(X = 0) �= 1 – 4C0(0.3)
4(0.7)0 

= 1 – (0.3)4 

= 1 – 0.0081 

= 0.9919

Intersection of domains x ≥ 0 and x < 2.

x ∈[0, 2) 

f (x) = 2x2 + 3 + px2 – 6 

y = (2 + p)x2 – 3

Interchange x and y to find the inverse.

x = (2 + p)y2 – 3

y2 = 
x
p

3
2

+
+

y = 
x
p

3
2

±
+
+

Select the +ve branch because of the domain of f (x).

f –1(x) = 
x
p

3
2

+
+

f –1(x) exists for p + 2 > 0.

∴p > –2
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QUESTION 10

Consider the functions with maximal domains: f (x) = x2 and g(x) = loge (x).

a	 State, with a reason, if f (g(x)) exists. 

1 mark

b	 State, with a reason, if g(f (x)) exists. 

1 mark

c	 Define h′(x) if h(x) = f (g(x))

2 marks
(Total: 4 marks)

QUESTION 11

From a sample of 60 Year 12 students, 45 said they like chocolate. Estimate the probability of Year 12 students liking 
chocolate and the variance of the sampling distribution.

3 marks

For f (g(x)), test ran (inner) ⊆ dom (outer).

R ⊆ R

∴f (g(x)) exists.

For g(f (x)), test ran (inner) ⊆ dom (outer).

[0, ∞) ⊄ (0, ∞)

∴g(f (x)) does not exist.

h(x) = f (g(x)), which exists

h(x) = (loge (x))
2

h′(x) �= 2 loge (x) × x
1

 

= 
x
2
loge (x) 

Domain f (g(x)) = domain g(x) = (0, ∞).

Domain h′(x) = (0, ∞)

h′: (0, ∞) → R, h′(x) = 
x
2
 loge (x) 

p ≈ p� = 45
60

3
4

=

Var (p�) ≈ p p
n

(1 )
3
4

1
3
4

60

3
16
60

−
=

−





=
� �

Var (p�) = 
1

320
The probability of Year 12 students liking chocolate is about 0.75, with a variance of 

1
320

.
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Mathematical Methods Formulas

Mensuration

area of trapezium:	
1
2
( )a b h+

curved surface area of a cylinder:	 2πrh

volume of a cylinder:	 πr 2h

volume of a cone:	
1
3

2πr h

volume of a pyramid:	
1
3
Ah

volume of a sphere:	
4
3

3πr

area of a triangle:	
1
2
bc Asin

Calculus
d
dx

x nxn n( ) = −1	 x dx
n

x c nn n∫ =
+

+ ≠ −+1
1

11 ,

d
dx

e aeax ax( ) = 	 e dx
a
e cax ax∫ = +1

d
dx

x
xelog ( )( ) = 1

	
1
x
dx x ce∫ = +log | |

d
dx

ax a axsin( ) cos( )( ) = 	 sin( ) cos( )ax dx
a

ax c∫ = − +1

d
dx

ax a axcos( ) sin( )( ) = − 	 cos( ) sin( )ax dx
a

ax c∫ = +1

d
dx

ax
a
ax

a axtan( )
cos ( )

sec ( )( ) = =2
2 	

product rule:
d
dx

uv u
dv
dx

v
du
dx

( ) = + 	 quotient rule:
d
dx

u
v

v
du
dx

u
dv
dx

v




 =

−
2

chain rule:
dy
dx

dy
du

du
dx

= × 	 approximation: f x h f x hf x( ) ( ) ( )+ ≈ + ′

Probability
Pr( ) Pr( )A A= − ′1 	 Pr( ) Pr( ) Pr( ) Pr( )A B A B A B∪ = + − ∩

Pr( | )
Pr( )
Pr( )

A B
A B
B

= ∩
	 variance:Var X E X E X( ) ( ) ( )= = −( ) = −σ µ µ2 2 2 2

mean: µ = E X( )

Probability distribution Mean Variance

Discrete Pr( ) ( )X x p x= = µ = ∑x p x( ) σ µ2 2= −∑( ) ( )x p x

Continuous Pr( ) ( )a b f x dx
a

b
< < = ∫X µ =

−∞

∞

∫ x f x dx( ) σ µ2 2= −
−∞

∞

∫ ( ) ( )x f x dx


