The Mathematical Association of Victoria

Trial Exam 2013

MATHEMATICAL METHODS (CAS)

WRITTEN EXAMINATION 1

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
11	11	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 8 pages, with a detachable sheet of miscellaneous formulas at the back
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the back of this book during reading time.
- Write your name in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Question 1 (2 marks)

Find an antiderivative of $\frac{1}{(1-2x)^3}$.

Question 2 (2 marks)

Consider $f:(2, 3] \to R$, $f(x) = (x-1)^{\frac{4}{5}}$ and $g:\left(-\frac{1}{4}, 5\right] \to R$, $g(x) = \sqrt[5]{(x-1)}$.

Find a function h where h = fg.

Question 3 (6 marks)

Let $f:(-8, \infty) \to R$, where $f(x) = -\sqrt{x+8} + 2$.

a. Sketch the graph of f on the set of axes below. Clearly label any axial-intercepts and endpoints with their coordinates.

2 marks

2013	MAV	Mathematical	Methods	(CAS)	Trial	Exam	1

b. Define f^{-1} .	
	2 mark
	2 mark
c. Find the coordinates of the point of intersection of f and f^{-1} .	
	2 mark
Question 4 (3 marks)	
Find the equation of the normal to the curve with equation $y = \log_2(x+2)$ at the y-intercept.	

2013	MAV	Mathematical Methods	(CAS	Trial	Fyam 1
4013	1V1/1 V	iviamicinatical ivictious	(CAS	, iliai	Lami

Question	5	(3	marks
Question	J	U	mai Ko

$ext{lve } \frac{2}{e^x} + 2 = 3e^x ext{ for }$	x.			

Question 6 (3 marks)

A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that maps the graph	h of $g: R \setminus \left\{ \frac{3}{2} \right\} \rightarrow R$, $g(x) = \frac{1}{(2x-3)^2} + 1$ to the graph
of $h: R \setminus \{0\} \to R$, $h(x) = \frac{1}{x^2}$ has rule $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} a \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} b \\ c \end{bmatrix} \end{pmatrix}, \text{ where } a, b \text{ and } c \text{ are non-zero real}$
numbers. Find a set of values for a , b and c .	

1 mark

Question 7 (4 marks)

For what values of k and n do	es the following	set of simultaneous	equations h	ave an	infinite
number of solutions					

	kx + 4y = 2n	
	2x + (k+2)y = -1	
Quest	tion 8 (6 marks)	
Consi	ider $f: [-1, 4] \rightarrow R$, $f(x) = 4 + 3x - x^2$ and $g: (-4, 4) \rightarrow R$, $g(x) = x $.	
a.	i. Find the coordinates of the point where $f'(x) = 0$.	
		1 mar
	ii. Hence, state the range of f .	

b. i. Write the rule and the domain for f(g(x)).

2 marks

ii. Sketch the graph of f(g(x)), clearly labelling any axial intercepts and turning points with their coordinates.

2 marks

Question 9 (4 marks)

Consider $y = ae^x \cos\left(2x - \frac{\pi}{3}\right)$, where a is a real constant.

a.	Find	$\frac{dy}{dx}$	

2 marks

2013	MΔV	Mathematical	Methods	$(C\Delta S)$	Trial Evam	1
2013	IVIAV	Manicillanca	Memous	ICAS.	i iiiai Exaiii	L

If $\frac{dy}{dx} = 1$, when $x = 0$, find the value of a. Write the answer in the form $m\sqrt{3} - n$, where m and n are	;
positive real constants.	
2 m	arks
Question 10 (4 marks)	
For events A and B, $Pr(A) = \frac{3}{4}$ and $Pr(B) = \frac{1}{5}$, evaluate,	
Pr($A' \cap B'$) when A and B are mutually exclusive, where A' and B' are the complements of A and B' respectively;	3
2 m	arks
• $Pr(A B)$ when $Pr(A \cup B) = \frac{33}{40}$.	
2 m	arks

Question 11 (3 marks)

The probability density function for the random variable, X, is given by

$$f(x) = \begin{cases} |a\cos(x)| & 0 \le x \le \pi \\ 0 & \text{elsewhere} \end{cases}$$

a. Show that $a = \frac{1}{2}$.

2 marks

Find $\Pr\left(X > \frac{\pi}{6}\right)$.					
	And $\Pr\left(X > \frac{1}{6}\right)$.				

1 mark

END OF QUESTION AND ANSWER BOOKLET