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SECTION 1

Question 1

Let 
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Question 2
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Question 3
The maximal domain and the range of the function 
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Question 4
The function h can be differentiated for all real values of x.

The derivative of the function
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Question 5
The continuous random variable X has a probability density function given by
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Question 6
The average rate of change of the function 
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Question 7
The gradient of the normal to the curve 
[image: image36.wmf]  

y

=

a

2

x

-

5

+

1

 at the point where 
[image: image37.wmf]  

x

=

3

,

is 

1

2

.

The value of a is

A. 
[image: image38.wmf]  

-

1

4


B. 
[image: image39.wmf]  

-

1

2


C.    
[image: image40.wmf]  

1

2


D.     1

E.     2

Question 8

Let 
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 where a and b are positive real numbers.
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Question 9
An approximation for 
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The approximation is equal to

A. 33.5

B. 34

C. 34.3

D. 34.7

E. 35


Question 10
Claude walks every day. If he buys a paper on his walk one morning then the probability that he buys one the next morning is 0.4. If he doesn’t buy a paper one morning then the probability that he buys one the next morning is 0.7. Claude bought a paper this morning.

The probability that Claude buys a paper at least once over the next three mornings is

A. 0.928

B. 0.946

C. 0.954

D. 0.964

E. 0.973

Question 11
The heights of a large group of army recruits are normally distributed with a mean of 179cm and a standard deviation of 5cm.

The tallest 20% of these recruits are invited to trial for a particular unit. The minimum height, in cm, required to be invited to trial for this unit is closest to

A. 174.8

B. 179.6

C. 183.2

D. 189.0

E. 194.0

Question 12
Let 
[image: image53.wmf]  

h

:

R

®

R

,

h

(

x

)

=

x

2

e

x

.

The average value of h over the interval 
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The value of r is

A. 3

B. 3.178
C. 4
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Question 13
Let 
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The area of the region enclosed by the y-axis, the graph of h, and the lines 
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That approximation is equal to
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Question 14
A spherical piece of ice with volume V (in mm3) is melting at the rate of 11.52
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 mm3 per minute.

When the radius of the sphere is decreasing at the rate of 2mm per minute, the radius of the piece of ice, in mm, is

A. 0.69

B. 0.80

C. 1.20

D. 2.73

E. 5.71


Question 15
Part of the graph of the function h is shown below.
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The equation of this graph could be
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Question 16

The cubic function h has stationary points such that 
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Question 17

Given that 
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Question 18

Kevin is a quality control officer on a production line. He is checking plastic car components for faults. The probability that Kevin finds a faulty car component is p where 
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The probability of one component being faulty is independent of the probability of the next component being faulty.

The probability that three of the next four components he checks are faulty is 0.1536.

The value of p is 

A. 0.16

B. 0.3

C. 0.36

D. 0.4

E. 0.47

Question 19

In a sample space containing the events A and B, 
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Question 20

The graph of 
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Question 21

The continuous cubic function h has a minimum turning point at the point
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Question 22

For the function f,


[image: image100.wmf].

 

of

 

 values

real

 

all

for 

   

2

2

 

and

2

2

θ

θ

f

θ

f

θ

f

θ

f

÷

ø

ö

ç

è

æ

p

-

-

=

÷

ø

ö

ç

è

æ

+

p

÷

ø

ö

ç

è

æ

-

p

=

÷

ø

ö

ç

è

æ

+

p


The rule for f could be
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SECTION 2

Answer all questions in this section.

Question 1 (9 marks)
A shampoo container in the shape of a half cylinder, has a height of h cm and a radius of r cm.
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The volume V, in cm3, of the container is 1000cm3 and can be expressed in terms of h and r as 
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a. Express h in terms of r.

(1 mark)

b. 
Show that the surface area A, in cm2, of the container is given by 
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(2 marks)

c. Find 
[image: image108.wmf]  
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 and hence find the exact value of r for which the surface area of the container is a minimum. 
(2 marks)

d. Find the minimum surface area of the container. Express your answer as an exact value. 
(1 mark)

e. 
The shampoo manufacturer decides to change the container. The general shape and volume of the half cylinder is retained but the surface area is to be 800cm2 and the radius is to be no greater than 5 cm. Find the height of this new container.  Express your answer in cm correct to 1 decimal place.
(3 marks)


Question 2 (13 marks)
Let 
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a. Over what interval is the graph of f strictly increasing?

(2 marks)

The graph of f undergoes a transformation, 
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and where c and d are real numbers. The graph of the image function has its turning point located at the origin 
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b. Find the values of c and d.

(2 marks)

Suppose the graph of f is dilated by a factor of k from one of the axes. The image graph passes through the point 
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c. Find the value of k.
(2 marks)
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Let 
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i. Write down the rule for g. 
(1 mark)
ii. Explain why g exists.
(1 mark)
iii. Find 
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iv. Sketch the graph of 
[image: image116.wmf])

(

'

x

g

y

=

 on the set of axes below.
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Question 3 (14 marks)
At a supermarket, store data indicates that the probability that a customer has one or more deli items in their purchase is 0.4.

a. Sue is an employee at the supermarket and during her shift at a checkout, she serves ninety customers. Let the random variable X represent the number of customers Sue serves who have one or more deli items in their purchases.

i. Find the probability that the first four customers that Sue serves don’t have any deli items in their purchase.

(1 mark)

ii. Find the mean number of customers Sue serves in her shift who have deli items in their purchase.

(1 mark)

iii. Find the probability, correct to 4 decimal places, that at least thirty of the customers Sue serves have deli items in their purchase.

(1 mark)

Data collected at the store indicates that when an employee at a checkout serves n customers, there is a probability of 
[image: image117.wmf]  
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 that all but one of those customers will have deli items in their purchase.

b. Show that n equals 6.

(3 marks)

Store data also shows that if a customer purchases milk then the probability that the next customer purchases milk is 0.6. If a customer doesn’t purchase milk then the probability that the next customer doesn’t purchase milk is 0.2.

Chris is a supermarket employee and when he opened his checkout, his first customer purchased milk.

c.
i.
Find the probability that amongst his next four customers, exactly three in succession 



didn’t purchase milk.

(3 marks)

ii.
Chris serves 60 customers before closing his checkout.

Find the probability that Chris’s last customer purchased milk.  Express your answer correct to four decimal places.
(2 marks)

The supermarket is undergoing renovations and has limited shelf space. As a result, some items need to be restocked frequently. The number of times T, in a day that toilet rolls are completely sold out and need to be restocked is a random variable with probability distribution given by

	T
	0
	1
	2
	3
	4
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	0.1
	0.2
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The toilet rolls had to be restocked on both Saturday and Sunday.

c. Find the probability that the toilet rolls had to be restocked a total of five times over these two days.

(3 marks)


 

Question 4 (12 marks)
Victoria James is a spy.

Whilst on a chairlift that spans a valley between two cliffs, her enemies destroyed the control tower causing the chairlift cable to slacken.

As a result, the position of the cable above the ground can be described by the continuous function
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where x represents the horizontal distance in metres of the cable from the base of the left hand cliff and y represents the height in metres of the cable above the ground.
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The graph of h is shown above.

The cable is attached to the top of 5m high towers on the left and right hand cliffs at points L and R respectively.  The base of the tower on the right hand cliff is indicated by point B. 
The cable touches the right hand cliff at point C and starts to fray. Victoria is left stationary at the point 
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a. Find the value of a.

(2 marks)

b. How high is Victoria above the ground?

(1 mark)

The gradient of the cable at point C is 1.48.

c. Find the coordinates of point C. 
(3 marks)


Victoria has equipment with her that enables her to lower herself to the ground from her stationary position. Let v be her height, in metres, above the ground t seconds after she starts her descent. The rate at which she descends is given by
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d. i.
Find an expression for v in terms of t. 
(2 marks)

ii. Hence find the time that it takes for Victoria to reach the ground. Express your answer correct to 3 decimal places. 
(1 mark)

At the same instant that Victoria starts her descent, an enemy spy who is located at point B, starts to abseil down to point C. He drops 0.24 metres vertically each second. Once at C he takes n seconds to cut the cable.

e. i.
Find an expression for the total time T, in terms of n, that it takes for him to abseil down from point B and cut the cable.

(2 marks)

ii. Assuming Victoria will be safe once she reaches the ground, find the values of n for which Victoria will be safe.

(1 mark)


Question 5 (10 marks)

Let 
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The graph of g has an x-intercept at the point
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 and the x and y axes is shaded.

a. Show that 
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(2 marks)
b. Find the values of k for which there is one point of intersection with the line 
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(2 marks)

c. If the area enclosed by the lines with equations 
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 and 
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a

 and the x and y axes, is equal to the area of the shaded region, then find the value of k.

(2 marks)

d. Find the area of the shaded region.

(1 mark)

The graphs of 
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, intersect at a point where 
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e. Find the value of k for which the area of the shaded region above the line 
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 is equal to the area of the shaded region below the line 
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. Express your answer correct to 2 decimal places.

(3 marks)

Mathematical Methods (CAS) Formulas

Mensuration

area of a trapezium:
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volume of a pyramid:
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curved surface area of a cylinder:
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volume of a sphere:
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volume of a cylinder:
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area of a triangle:
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Calculus
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product rule:
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quotient rule: 
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chain rule:
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approximation:
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