

2011 Trial Examination

<u>Í</u>		\
1		i
į		1
1	THIS BOX IS FOR ILLUSTRATIVE PURPOSES ONLY	
i		!
1		
\		i

	STUDENT	Γ NUMBE	R				Letter
Figures							
Words						-	

MATHEMATICAL METHODS (CAS)

Units 3 & 4 – Written examination 1

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40
		Total 40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 8 pages.
- Working space is provided throughout the book.

Instructions

- Print your name in the space provided on the top of this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic communication devices into the examination room.

© TSSM 2011 Page 1 of 8

Instructions

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an exact answer is required to a question. In questions where more than one mark is available, appropriate working must be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

\sim	4 •	4
()	uestion	1

a.	Differentiate $f(x) = \log_e(2 - x)^4$ with respect to x .	
		2 mark
) .	Evaluate $f^{-1}(0)$ where f^{-1} is the inverse function of f .	
		3 marks
	For $g(x) = x^2 e^{\sin(x)}$, find $g'\left(\frac{\pi}{2}\right)$	
		2 marks

© TSSM 2011 Page 2 of 8

Question 2

•	Find an anti-derivative of $\sqrt{x} - 2\sin\left(\frac{\pi x}{4}\right)$ with respect to x .
	2 mark
•	Find m given that $\int_0^2 (2x-1)^3 dx = e^{\log_e m}$

2 marks

TURN OVER

© TSSM 2011 Page 3 of 8

Question 3

a. Write down the amplitude and the period of the function $f: R \to R$, $f(x) = -3\cos\left(\frac{\pi - x}{5}\right)$.

2 marks

b. Solve the equation $-\cos(2x) = \sin(2x)$ for $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

3 marks

c. Sketch the graph of $y = \tan(2x)$ for $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, showing the exact values of the axial intercepts and asymptotes.

2 marks

Question 4

The transformations $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} -4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 3 \\ -1 \end{bmatrix}$. The image of the
curve $y = 2\log_e(4x) + 1$ under the transformation T has equation $y = a\log_e(bx + c) + d$. Find the values of a, b, c , and d .
4 marks
4 marks
Question 5 Soft drink is leaking from a bottle at a constant rate to form a circular puddle on the bench. The soft drink is added to the puddle at a rate of 12 mm³ per minute causing the puddle to spread out evenly, which has a height that is a sixth of its radius.
Find the exact rate at which the radius of the puddle is increasing when the radius is 20 mm.
3 marks

TURN OVER

© TSSM 2011 Page 5 of 8

Question 6

A square piece of paper is cut from a larger piece of paper. Use the relationship $f(x+h) \approx f(x) + hf'(x)$ for a small positive value of h, to find an approximate value for the side length of the square if the area of the square piece of paper is 9.01 cm.			
		_	
		-	
		_	
		-	
		_	
	4 mark	S	
	estion 7		
The	continuous random variable <i>X</i> has a distribution with probability density function given by		
	$f(x) = \begin{cases} m\cos(x) & x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \\ 0 & \text{elsewhere} \end{cases}$		
when	re <i>m</i> is a constant, find		
a.	the value of m .		

© TSSM 2011 Page 6 of 8

3 marks

•	$Pr(X > \pi)$
	2 mai
u	estion 8
	X be a normally distributed random variable with mean 11 and variance 4 and let Z be the dom variable with the standard normal distribution. Find
•	Pr(X < 7)
	1 mar
•	m such that $Pr(X < 8) = Pr(Z > m)$

2 marks

TURN OVER

© TSSM 2011 Page 7 of 8

Question 9

a.	Show that $\frac{3-2x}{x+2} = \frac{7}{x+2} - 2$	
		2 marks
b.	Hence, find $\int \frac{3-2x}{x+2} dx$.	

1 mark

END OF QUESTION AND ANSWER BOOK

© TSSM 2011