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VCE Mathematical Methods (CAS) Units 3 & 4 Trial Examination 1 Suggested Solutions

Question 1
(f-g)(1)=f(1)-g(l)
a. =2-6
=4
Al
b. Asg(2)=4,wehave g '(4)=2.Thus f(g ' (4))=F(2)=0. Al
Question 2

a. The simultaneous equations can be represented in matrix form as {2 p } [x} = [4} . These equations
5 gy 6

will have a unique solution if det {2 p } #0.
Sq

.. The relationship required is 2g —5p#0 or p # %q . Al

b. Rearranging the simultaneous equations and representing them in matrix form:
-mx+y=n..1) |y 1||x|_|n
3x-T7y=2...2) |3 -T||y 2

It is not a unique solution if det [—m 1} =0,

3 -7
(Tm=3)=0
me=3 Al
7

And if equation (1) is identical to equation (2), an infinite set of solutions will occur.

equation (1) y = %x +n

equation (2) y = %x -

i

Question 3
a. f(x)=x -2x+3=f(x)=2x-2
Thus f’(2)=4-2=2and (2)=4-4+3=3.

Equation of the tangentat x =2 is givenby y-3=2(x-2)=>y=2x-1. Al
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b.
Parabola over domain with tangent shown Al
c. i. The size of the error is given by the vertical distance between the graphs.
Error=x"—2x+3—(2x—1)=(x-2) M1
x=2.5 gives error = i . Al
ii. Now (x — 2)2 <04, giving — /04 < (x-2)</04. M1

Thus the largest value of x will be /0.4 +2 = J% +2

=L+2

J10

=10+m Al
5
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Question 4

a  Pr(X>8)= Pr(Z< 8;—8)

=Pr(Z>0)
=0.5 Al
b. Pr(X<0) :Pr(Z< (%) M1
=Pr(Z<-2)
=Pr(Z>2)
sk=2 Al
Question 5
a. Area below the curve must equal 1.
.'.Area:%(S)a+5a: 1 M1
%a =1
2
.ad=— Al
“T1s
b. m is such that Pr(X <m) = %
9,221
Here,Pr(X<5)—2a—2><15—3 M1
. require:
Pr(5<X<m)=é Ml
2 1
= 15m=3=g
m—5=§
4
m= 6l or 6.25 Al
4
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Question 6
EX)=1
2xp(x)=1
(—1)p2+0+(1)(1+43p)+2(%)+3(l—27)= M
—4p°+1+3p+1+6p=4
—4p’+9p-2=0 Al
4p*-9p+2=0
(4p-D(p-2)=0
p=i0rp=2 Al
Given Pr(X=-1)=p>, . 0<p<1, .'.p=41‘. Al
Question 7
2 > %‘
v e D)t (£) 2 "
4
x2
=10ge(z)+2 Al
-1
b. Area:J- loge()—i-;)dx

)+c M1

Using (loge( )—Z— ) + 2) dx = xloge( )—Z-

=x10ge(%)—2x+c Al

2 -1

7)-2,
=|(- 108, }J +2) - (- 2log,(1) + 4)‘
= —loge( i) —2‘

:2+10ge(i)

=2 -log,(4) Al

~.Area = [xloge(
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Question 8
Atx=b,y=.Ja-b
1
dy _1 2 Ml
= ==(-1)(a-x
&= Dia-x)
__ -1
2.Ja—x
-.gradient of normal =2 Ja — x
Gradient of normal at x=b is 2/a - b. Al
Gradient of line through (0, 0) and (b, +/a — b) is __________,ab—b . Al
[i_p=na=b
b
2= 1 asa#b
b
1
b=-= Al
2
Question 9
a. xX= sin(mz) so we have v = % = 2mcos(nt2) Al
a= ?f: = 2a(t - (=27t)sin () + 1 - cos (7))
=47’ sin(7wt) + 27 cos (1Y) Al
b. v =0 which occurs at: M1
=0 and cos(ntz):O:ntZ:%+kn,ke z
P=lik=i= Lik Mi
2 2
Velocity is zero at t=0 and ¢ = /%+k,ke Z"u{0}. Al
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Question 10

a. Condition II states that g’(1) = tan(45°) = 1.

Using condition III, we have di(g(2x)) =g’(x) = 2g¢’(2x) = g’(x) by the Chain Rule. M1
X
So g’(1)=2g"(2), giving 1:2g’(2):g’(2):%. Al
b. Using condition III, we have di( 2(2x)) = g’(x) . Integrating both sides with respect to x:
X
g'(2x)=g'(x) = g(2x) =g(x) +c¢ MI
Letx=1, g(2)=g(1)+c.
Using condition I, g(1)=0 and ¢ = g(2), giving g(2x) =g(x) + g(2). Al
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