

Trial Examination 2011

VCE Mathematical Methods (CAS) Units 3 & 4

Written Examination 1

Suggested Solutions

$$(f-g)(1) = f(1) - g(1)$$
a. $= 2 - 6$
 $= -4$

A1

b. As
$$g(2) = 4$$
, we have $g^{-1}(4) = 2$. Thus $f(g^{-1}(4)) = f(2) = 0$.

Question 2

a. The simultaneous equations can be represented in matrix form as $\begin{bmatrix} 2 & p \\ 5 & q \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$. These equations

will have a unique solution if $\det \begin{bmatrix} 2 & p \\ 5 & q \end{bmatrix} \neq 0$.

$$\therefore$$
 The relationship required is $2q - 5p \neq 0$ or $p \neq \frac{2}{5}q$.

b. Rearranging the simultaneous equations and representing them in matrix form:

$$-mx + y = n \dots (1) \begin{bmatrix} -m & 1 \\ 3x - 7y = 2 \dots (2) \end{bmatrix} \begin{bmatrix} x \\ 3 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} n \\ 2 \end{bmatrix}$$

It is not a unique solution if $\det \begin{bmatrix} -m & 1 \\ 3 & -7 \end{bmatrix} = 0$,

$$\therefore (7m - 3) = 0$$

$$m = \frac{3}{7}$$
A1

And if equation (1) is identical to equation (2), an infinite set of solutions will occur.

equation (1)
$$y = \frac{3}{7}x + n$$

equation (2) $y = \frac{3}{7}x - \frac{2}{7}$ $\therefore n = -\frac{2}{7}$

Question 3

a.
$$f(x) = x^2 - 2x + 3 \Rightarrow f'(x) = 2x - 2$$

Thus
$$f'(2) = 4 - 2 = 2$$
 and $f(2) = 4 - 4 + 3 = 3$.

Equation of the tangent at
$$x = 2$$
 is given by $y - 3 = 2(x - 2) \Rightarrow y = 2x - 1$.

b.

Parabola over domain with tangent shown

A1

c. i. The size of the error is given by the vertical distance between the graphs.

Error =
$$x^2 - 2x + 3 - (2x - 1) = (x - 2)^2$$
 M1

$$x = 2.5$$
 gives error $= \frac{1}{4}$.

ii. Now
$$(x-2)^2 \le 0.4$$
, giving $-\sqrt{0.4} \le (x-2) \le \sqrt{0.4}$. M1

Thus the largest value of x will be
$$\sqrt{0.4} + 2 = \sqrt{\frac{4}{10}} + 2$$
$$= \frac{2}{\sqrt{10}} + 2$$

$$=\frac{\sqrt{10}}{5}+2$$

$$=\frac{10+\sqrt{10}}{5}$$
 A1

a.
$$Pr(X > 8) = Pr\left(Z < \frac{8 - 8}{4}\right)$$
$$= Pr(Z > 0)$$
$$= 0.5$$

b.
$$Pr(X < 0) = Pr\left(Z < \frac{0 - 8}{4}\right)$$

$$= Pr(Z < -2)$$

$$= Pr(Z > 2)$$

$$\therefore k = 2$$
A1

Question 5

a. Area below the curve must equal 1.

$$\therefore \text{Area} = \frac{1}{2}(5)a + 5a = 1$$

$$\frac{15}{2}a = 1$$

$$\therefore a = \frac{2}{15}$$
A1

b. m is such that $Pr(X < m) = \frac{1}{2}$.

Here,
$$Pr(X < 5) = \frac{5}{2}a = \frac{5}{2} \times \frac{2}{15} = \frac{1}{3}$$
 M1

∴ require:

$$Pr(5 < X < m) = \frac{1}{6}$$

$$\Rightarrow \frac{2}{15}(m-5) = \frac{1}{6}$$

$$m-5 = \frac{5}{4}$$

$$m = 6\frac{1}{4} \text{ or } 6.25$$
A1

$$E(X) = 1$$

$$\sum xp(x) = 1$$

$$(-1)p^2 + 0 + (1)\left(\frac{1+3p}{4}\right) + 2\left(\frac{1}{8}\right) + 3\left(\frac{p}{2}\right) = 1$$

$$-p^2 + \frac{1+3p}{4} + \frac{1}{4} + \frac{3p}{2} = 1$$

$$-4p^2 + 1 + 3p + 1 + 6p = 4$$

$$-4p^2 + 9p - 2 = 0$$

$$4p^2 - 9p + 2 = 0$$

$$(4p - 1)(p - 2) = 0$$

$$p = \frac{1}{4} \text{ or } p = 2$$
A1
Given $\Pr(X = -1) = p^2$, $\therefore 0 , $\therefore p = \frac{1}{4}$$

Question 7

$$\mathbf{a.} \qquad \frac{d}{dx} \left(x \log_e \left(\frac{x^2}{4} \right) \right) = 1 \cdot \log_e \left(\frac{x^2}{4} \right) + x \cdot \frac{\frac{x}{2}}{\frac{x^2}{4}}$$
 M1

$$=\log_e\left(\frac{x^2}{4}\right) + 2$$

A1

b. Area =
$$\int_{-2}^{-1} \log_e \left(\frac{x^2}{4} \right) dx$$

Using
$$\int \left(\log_e\left(\frac{x^2}{4}\right) + 2\right) dx = x\log_e\left(\frac{x^2}{4}\right) + c$$
 M1

$$\int \log_e \left(\frac{x^2}{4}\right) dx = x \log_e \left(\frac{x^2}{4}\right) - \int 2 dx + c$$

$$= x \log_e\left(\frac{x^2}{4}\right) - 2x + c$$
 A1

$$\therefore \text{Area} = \left| \left[x \log_e \left(\frac{x^2}{4} \right) - 2x \right]_{-2}^{-1} \right|$$

$$= \left| \left(-\log_e \left(\frac{1}{4} \right) + 2 \right) - \left(-2 \log_e (1) + 4 \right) \right|$$

$$= \left| -\log_e \left(\frac{1}{4} \right) - 2 \right|$$

$$= 2 + \log_e \left(\frac{1}{4} \right)$$

$$= 2 - \log_e (4)$$
A1

At
$$x = b$$
, $y = \sqrt{a - b}$

$$\frac{dy}{dx} = \frac{1}{2}(-1)(a-x)^{-\frac{1}{2}}$$

$$= \frac{-1}{2\sqrt{a-x}}$$
M1

 \therefore gradient of normal = $2\sqrt{a-x}$

Gradient of normal at
$$x = b$$
 is $2\sqrt{a - b}$.

Gradient of line through
$$(0, 0)$$
 and $(b, \sqrt{a-b})$ is $\frac{\sqrt{a-b}}{b}$.

$$\sqrt{a-b} = \frac{\sqrt{a-b}}{b}$$

$$2 = \frac{1}{b} \qquad \text{as } a \neq b$$

$$b = \frac{1}{2}$$
A1

Question 9

a.
$$x = \sin(\pi t^2)$$
 so we have $v = \frac{dx}{dt} = 2\pi t \cos(\pi t^2)$

$$a = \frac{dv}{dt} = 2\pi (t \cdot (-2\pi t)\sin(\pi t^2) + 1 \cdot \cos(\pi t^2))$$
A1

$$= -4\pi^{2} t^{2} \sin(\pi t^{2}) + 2\pi \cos(\pi t^{2})$$
A1

b.
$$v = 0$$
 which occurs at:

$$t = 0$$
 and $\cos(\pi t^2) = 0 \Rightarrow \pi t^2 = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$

$$t^2 = \frac{1}{2} + k \Rightarrow t = \sqrt{\frac{1}{2} + k}$$
 M1

Velocity is zero at
$$t = 0$$
 and $t = \sqrt{\frac{1}{2} + k}$, $k \in \mathbb{Z}^+ \cup \{0\}$.

a. Condition II states that $g'(1) = \tan(45^\circ) = 1$.

Using condition III, we have
$$\frac{d}{dx}(g(2x)) = g'(x) \Rightarrow 2g'(2x) = g'(x)$$
 by the Chain Rule. M1

So
$$g'(1) = 2g'(2)$$
, giving $1 = 2g'(2) \Rightarrow g'(2) = \frac{1}{2}$.

b. Using condition III, we have $\frac{d}{dx}(g(2x)) = g'(x)$. Integrating both sides with respect to x:

$$g'(2x) = g'(x) \Rightarrow g(2x) = g(x) + c$$
 M1

Let
$$x = 1$$
, $g(2) = g(1) + c$.

Using condition I,
$$g(1) = 0$$
 and $c = g(2)$, giving $g(2x) = g(x) + g(2)$.