The Mathematical Association of Victoria Trial Exam 2011

MATHEMATICAL METHODS (CAS)

STUDENT NAME		
SIIIIHANI NAWK		

Written Examination 1

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

Note

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 8 pages, with a detachable sheet of miscellaneous formulas at the back.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the back of this book during reading time.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1

a.	$\frac{d}{dx}(x\tan(x)).$
----	---------------------------

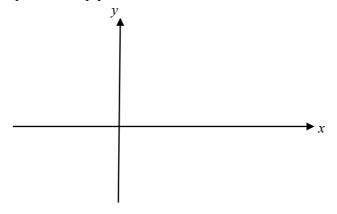
b. i.
$$\frac{d}{dx}(e^{2x} + 2x)$$
.

ii. Hence, find an antiderivative of	$\frac{4(e^{2x}+1)}{}$
	$e^{2x} + 2x$

$$1 + 1 = 2 \text{ marks}$$

Question 2

a. Sketch the graph of f:[-1,3], where $f(x)=(x-1)^{\frac{2}{3}}+2$ on the set of axes below. Clearly label the endpoints, intercept and sharp point with their coordinates.



2 marks

TURN OVER

b. 1	Find the average value of f , over the interval $[0, 2]$.	
_		
_		
_		
_		
_		3 marks
0		
	tion 3 that $y_0 y_0(s)$ of k , where k is a real constant, do the simultaneous equations	
roi w	that value(s) of k , where k is a real constant, do the simultaneous equations $kx + 2y = 6$ and	
	3x + (k-1)y = 6	
have i	no solution?	
nave	no solution:	
		3 marks
Quest	tion 4	
Solve	$2\log_2(x-1) + \log_2(x+1) = 0$ for x.	
		4 marks

Question 5

Let $f: R \to R$, where $f(x) = 1 - e^{-x}$.

0	Find	f -1
a.	rına	Į.

3 marks

b.	State the coordinates of the point where	f = 1	f^{-1}
----	--	-------	----------

1 mark

Question 6

If $f(x) = x^3 + 3$, g(x) = |x-1| and h(x) = g(f(x)), define h'(x) as a hybrid function.

3 marks

Question 7

A transformation is described by the equation $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

a. Find the image of the curve with equation $y = \frac{2}{x+1} - 1$ under this transformation. Give your answer in the form $y = \frac{a}{x} + b$ where a and b are real constants.

3 marks

b. Hence, describe how the graph of $y = \frac{2}{x+1} - 1$ can be transformed to the graph of the image.

3 marks

Ouestion 8

The table below represents a probability distribution of a random variable X.

x	0	1	2	3	4
$\Pr(X=x)$	p	3 <i>p</i>	q	0.03	0.01

a. If 2p-q=0, show that the value of p is 0.16.

2 marks

b. I	Find $Pr(X < 2 \mid X < 3)$.
_	
_	
_	
	1 mark
The 1	ention 9 ength of time, t (hours) that certain sea anemones survive is a random variable whose
proba	ability density function can be modelled by $f(t) = \begin{cases} \frac{k}{2} \left(\cos\left(\frac{\pi}{3}t\right) + 1 \right) & 0 \le t \le 3 \\ 0 & \text{elsewhere} \end{cases}$
and k	is a real constant.
a. S	Show that $k = \frac{2}{3}$.
	2 marks
b. I	Evaluate the probability that a particular sea anemone will survive for more than two years.
	2 marks

TURN OVER

Question 10		
Solve $\frac{d}{dx}\sqrt{(1+\cos^3(2x))} = 0$ for $0 \le x \le \pi$.		
	4 marks	

END OF QUESTION AND ANSWER BOOK

Mathematical Methods (CAS) Formulas

Mensuration

area of a trapezium: $\frac{1}{2}(a+b)h$ volume of a pyramid: $\frac{1}{3}Ah$

curved surface area of a cylinder: $2\pi rh$ volume of a sphere: $\frac{4}{3}\pi r^3$

volume of a cylinder: $\pi r^2 h$ area of a triangle: $\frac{1}{2}bc\sin A$

volume of a cone: $\frac{1}{3}\pi r^2 h$

Calculus

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$$

$$\int a^{ax} dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

$$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$$

$$\int \frac{1}{x} dx = \log_e|x| + c$$

$$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$$

$$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$$

$$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$$

$$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a \sec^2(ax)$$

product rule: $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$ quotient rule: $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

chain rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$ approximation: $f(x+h) \approx f(x) + hf'(x)$

Probability

$$Pr(A) = 1 - Pr(A') Pr(A \cap B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)} \text{ transition} \qquad \text{matrices:} \qquad S_n = T^n \times S_0$$

mean: $\mu = E(X)$ variance: $var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

prob	ability distribution	mean	variance
discrete	$\Pr(X=x) = p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
continuous	$Pr(a < X < b) = \int_{a}^{b} f(x)dx$	$\mu = \int_{-\infty}^{\infty} x \ f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$