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SECTION 1 
 
Question 1   Answer  A 
 

( )

2
2

3 or ,3

x k k
k x k k

k x k k k

− <

− < − <

< <

 

 

Question 2   Answer  A 
 

average value  ( )1 b

a

y f x dx
b a

=
− ∫   

2

0
2

2

0

1 2 2sin
2 0 2

1 4 cos
2 2

xy x dx

xy x

π

π
π

⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

⎡ ⎤⎛ ⎞= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⌠
⎮
⌡

                   

( ) ( )

( )

1 4 4 1 84 cos 0 cos 0 4
2 2

2 242

y

y

π
π π π

π
π π

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤= − − − = +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦
+

= + =

 

 

Question 3   Answer  B 
 

ax b b acy a
x c x c

+ −
= = +

+ +
 

so  y a=  is a horizontal asymptote and x c= −  is a vertical asymptote. 
 

Question 4   Answer  D 
 

( ) ( ) ( ) ( )

( )( ) ( )

( )( )( ) ( )( )( ) ( )( ) ( )

( )( ) ( ) ( )( )( )

2

2

2
2

2

1, and cos

1tan
cos

1now cos cos
cos

1so tan
cos

f x x g x h x x
x

d x
dx x

g f x g xg f h x
x

d x g f h x
dx x

= = =

=

= = =

= =
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Question 5   Answer  B 
 

( )

[ ]
( ) ( )

( )

( )

the domain requires 0 and 0
that is and since 0
the domain is ,

now

0 turning point at
2 2

and 2
2

the range is , 2

f x x a b x
x a b x

x a x b b a
a b

f a f b b a

a b a bf x

a bf b a

b a b a

= − + −

− ≥ − ≥
≥ ≤ > >

= = −

+ +⎛ ⎞′ = ⇒ =⎜ ⎟
⎝ ⎠

+⎛ ⎞ = −⎜ ⎟
⎝ ⎠

⎡ ⎤− −⎣ ⎦

 

 
 
Question 6   Answer  E 
 

( )2

3 1
2 1 2 9 1
1 4

solving using CAS gives
2 21 and

1 1

p
p p

p

x y z
p p

Δ = − = − −

= = =
+ +

              

Since  0 1pΔ = ⇒ = ± ,  there is no unique 
solution when  2 1p = , 
there is a unique solution when 2 1p ≠ . When 1p = −  there is no solution  
and when 1p =  there is an infinite number of solutions.  
Only option E. is correct. 
 

x

y

a b  
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Question 7   Answer  A 
 

When the point ( )2, 3−  is reflected in the x-axis, it becomes, the point ( )2,3 , when 
it is translated one unit, to the left parallel to the x-axis, or away from the y-axis, it 
becomes ( )1,3 , finally it is translated one unit up parallel to the y-axis or away from the  

x-axis, it becomes ( ) ( )1,4 under 1 1y f x= − + .   
 
 

Question 8   Answer  C 
 

The function is continuous at ,x a=   
all other options are true. 
 
 

 
 
 
 
 
Question 9   Answer  B 
 

3
5

1

z
x y
y x

=
+ =
− = −

     rewrite the equations as 

 
5
1
3

x y
x y

z

+ =
− =

=
    in matrix from these become    

1 1 0 5
1 1 0 1
0 0 1 3

x
y
z

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
Question 10   Answer  E 
 

Since it is a probability density function  
3

2

0

2 1
9

dx
xπ

=
−

⌠
⎮
⌡

         

( )

( )

( ) ( ) ( )( )

3

2

0
3

2
2

2

0
2

22

2 6
9

2 9 by CAS
29

9 6var 0.85
2

xE X dx
x

xE X dx
x

X E X E X

ππ

π

π

= =
−

= =
−

⎛ ⎞= − = − ≈⎜ ⎟
⎝ ⎠

⌠
⎮
⌡

⌠
⎮
⌡

 

x
a 

y 
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Question 11   Answer D 
 

2 2

2

2

4 4

8 now when 0 0
0 8 8

8 1

x x

x

x

dy e y e dx
dx

y e c x y
c c

y e

− −

−

−

= ⇒ =

= − + = =
= − + ⇒ =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

∫

 

 

Question 12   Answer  B 
 

( ) ( )

( ) ( ) ( )

( ) ( )

1 0.010.99
0.99

0.99

1Let Now

with 1 and 0.01,
using

1 1 0.01 1

xf x e e e
e

x h
f x h f x hf x

f f
e

− −− −= = =

= = −

′+ ≈ +

′= −

 

 

 
Question 13   Answer  C  
 

2
3

8cos 4sin
2 2

gradient of the tangent 4sin 2 3
3

1 3 3gradient of the normal
62 3 3

T
x

N

x dy xy
dx

dym
dx

m

π

π

=

⎛ ⎞ ⎛ ⎞= ⇒ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= = − = −⎜ ⎟
⎝ ⎠

= × =

 

 

Question 14   Answer  A 
 

( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )

( )

2

2

2

2

2

using the quotient rule

2

6 3 9 3
3 now 3 2 and 3 1

3

6 2 9 1 33
2 4

xf x
g x

xg x x g x
f x

g x

g g
f g g

g

f

=

′−
′ =

⎡ ⎤⎣ ⎦
′−

′ ′= = =
⎡ ⎤⎣ ⎦

× − ×′ = =
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Question 15   Answer  A 
 

( )( )

( ) ( ) ( )

0

2
0 2

02

2
2 0

2

0 4 4 2 2

x f x dx

x f x dx f x dx

−

⎡ ⎤= − = − + = − + = −⎣ ⎦

∫

∫ ∫
 

 

Question 16   Answer  B 
 

( )
( )
( ) ( )

( )( ) ( )( )
( ) ( )

Pr

Pr

Pr Pr

1 Pr 1 Pr

1 1

a Z b

b Z a

Z a Z b

Z a Z b

A B
B A

− < < −

= < <

= < − <

= − > − − >

= − − −

= −

 

 

 
Question 17   Answer  D 
 

The shaded area, with the x-axis is 

( )

( )

2
2 1 2 1

1
2

0

with 0 1 2 and 1

1

b

a

A y y dx a b y y x

A x dx

= − = = = = +

= −

∫

∫
 

however this is none of the alternatives,  
the area with the y-axis, is  

2

2

with 1 and 2 1

1 and 1 since 0

d

y
c

A x dy c d y x

x y x y x

= = = = +

⇒ = − = − >

∫  

2 2

1 1

1 1A y dy x dx= − = −∫ ∫     using dummy variable property. 

 
 

a b b a− −  
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Question 18   Answer  E 
 
 

 
 
 
 
 
 
 
 
 
 

( ) ( ) ( )
( ) ( )( )

23 2 2 3

2 2

5 7 3 3

3 10 7 3 7

f x x ax a x a x a x a

f x x ax a x a x a

= − + − = − −

′ = − + = − −
 

there are turning points at  7and
3
ax a x= = ,   

for the function to be one-one, the only correct option is the restricted interval  7 ,
3
a⎛ ⎞∞⎜ ⎟

⎝ ⎠
 

 

Question 19   Answer  D 
 

Since A and B are independent events, ( ) ( ) ( )Pr Pr PrA B A B ab∩ = =  
 
 
 
 
 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
Pr Pr Pr Pr

1 1 1
1

A B A B A B

a b a b ab
ab

′ ′ ′ ′ ′ ′∪ = + − ∩

= − + − − − − +

= −

 

 

 A  A′   
B  ab b ab−  b 
B′  a ab−  1 a b ab− − +  1 b−
 a 1 a−   

x

y

7 3
3
aa a  
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Question 20   Answer  C 
 

Three right rectangles, each of width 
6

h π
=  

x 0  
6
π  

3
π  

2
π  

( )siny x=  0 1
2

 3
2

 
1 

 

The shaded area of the three rectangles is 
( )3 31 3 3 31

6 2 2 6 2 12
A

ππ π +⎛ ⎞ ⎛ ⎞+
= + + = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

Question 21   Answer  C 
 

( )
( ) ( )

( ) ( ) ( )
( )

( )

1 2 2

10 9 8 2

Bi ,

Pr more than two Pr 2

1 Pr 0 Pr 1 Pr 2

1
1

2

1 0.7 10 0.7 0.3 45 0.7 0.3

10 , 0.7 and 0.3

n n n

X n p

X

X X X

n n
q npq p q

n q p

− −

= >

⎡ ⎤= − = + = + =⎣ ⎦
⎡ ⎤−

= − + +⎢ ⎥
⎣ ⎦

= − + × × + × ×

⇒ = = =

∼

 

 
 

Question 22   Answer  E 
 

One solution when 0n =  is 
6

x π
= −  so that 

( )2 and tan 2 3
3

x xπ
= − = −  

( )
( ) ( ) ( )

( ) ( )

sin 2
3 or sin 2 3 cos 2

cos 2

or sin 2 3 cos 2 0

x
x x

x

x x

= − = −

+ =

 

so the general solution of  

( ) ( ) ( )3 1
sin 2 3 cos 2 0 is where

2 6 6
nnx x x n Z

ππ π −
+ = = − = ∈  

1 and 3a b= =  
 

 
 

END OF SECTION 1 SUGGESTED ANSWERS
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SECTION 2 
 

Question 1 
 
a.i. 2 marks, for correct transformations 
 

• reflection in the x-axis 
• dilation by a factor of 4 parallel to the y-axis ( or away from the x-axis) 
• translation by 3 units to the right parallel to the x-axis, ( or away from the y-axis ) 
• translation by 4 units up and parallel to the y-axis, ( or away from the x-axis ) 

 

ii. 
( )2

4: 4
3

m y
x

= −
−

     interchanging x and y 

 
( )

( )

1
2

2

4: 4
3

4 4
3

m x
y

x
y

− = −
−

= −
−

        M1 

 
( )2 43

4
23

4

y
x

y
x

− =
−

±
− =

−

 

 
 Since the range of 1m−  is ( ),3−∞ , the same as the domain of m, we 

must take the negative, so 23
4

y
x

= −
−

      A1 

 Now the domain of  1m−  is the same as the range of m, that is  ( ),4−∞ .     
 To state the function, we need to state both the domain and the rule. 

 ( ) ( )1 1 2: ,4 , 3
4

m R m x
x

− −−∞ → = −
−

      A1 

 

iii. the graph of  1m−  crosses the x-axis at 32 ,0
9

⎛ ⎞
⎜ ⎟
⎝ ⎠

, since ( ) 4 320 4
9 9

m = − =   

 and crosses the y-axis at ( )0,2 , since ( )1 20 3 2
4

m− = − =     A1 

for the graph of ( ) 3m x x =   is a vertical asymptote and 4y =  is a horizontal 

asymptote, so for the graph of  ( )1 3m x y− =  is a horizontal asymptote and   
4x =  is a vertical asymptote.        A1 

 correct graph, shape, reflection in the line y x= , and the intersection of m and 
1m−  must be on the line y x= .        A1
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x

y

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

1

2

3

4

5

 
 

b.i.  since ( ) ( )32 50 3 , 2 0
9 9

f f= = =   and ( ) ( ) ( ) 322 10 0 and 6
9

g g g= = =  

 amplitude  32
9

b⇒ = , the phase shift is 2 units, to the right, so that  2c =   A1 

 the sine squared wave is half a cycle 8
8

T n
n
π π

⇒ = = ⇒ =    A1 
 
 
 

 the graph of h is the reflection in the line, 6x =   ( ) ( ) 3210 0 and 12
9

h h= =  

 ( )
( )2

44 so that 4 , 4 and 9
9

h x p r s
x

= − = = − =
−

    A1 

ii. using symmetry, in terms of two definite integrals, the area between the curves 

 
( )

( )( )
2

6

2
2

2
0

32 4 322 4 sin
9 93

A dx b n x c dx
x

⎡ ⎤
⎛ ⎞⎛ ⎞⎢ ⎥⎛ ⎞⎜ ⎟⎜ ⎟= − − + − −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠−⎢ ⎥⎝ ⎠⎝ ⎠

⎣ ⎦

⌠ ⌠⎮ ⎮⎮ ⌡⌡
     A2 

13 fory HA m−=  

1

4
for
x VA

m−

=
 

( )1 23
4

m x
x

− = −
−

 

32 ,0
9

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( )0,2  

( )
( )2

44
3

m x
x

= −
−
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or alternatively, other equivalent answers are possible. 
 

( )
( )

2 6

2
2

20

4 4 322 cos 2
9 9 83

A dx x dx
x

π
⎡ ⎤

⎛ ⎞⎢ ⎥⎛ ⎞⎛ ⎞⎜ ⎟= − + −⎜ ⎟⎢ ⎜ ⎟ ⎥⎜ ⎟ ⎝ ⎠− ⎝ ⎠⎢ ⎥⎝ ⎠
⎣ ⎦

⌠ ⌠
⎮ ⎮⎮ ⌡⌡

 

 
 
 

iii. 2160 717 metres
9 9

A = =   using CAS          A1 

iv. 

x

y

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

 
 
 the line through ABCD is half the maximum value, that is  

16
9

y = ,   solving  
( )2

16 44 with 0 2
9 3

x
x

= − < <
−

   

gives 1.65836x =  solving 

( )216 32 sin 2 with 2 10
9 9 8

gives 4 and 8

x x

x x

π⎛ ⎞= − < <⎜ ⎟
⎝ ⎠

= =
 

16 16 161.6584, 4, 8,
9 9 9

A B C⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

the length of  AD ( )2 4 1.65836 4= − +   or alternatively  ( )2 6 1.65836= −  
length  ABCD is   8.683   metres        A1 
 

A B C D 
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Question 2 
 
 

a.i. 0.65 0.55 0.65 0.55
Let

0.35 0.45 0.35 0.35

C S
C

A
S

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

 

 0.65 0.35 0.55 0.45C C C S S C S S→ → → →  
 
 ( ) ( ) 2Pr Coles once Pr 0.35 0.45 0.0709CSSS= = × =      A1 
 
ii. ( ) ( ) ( ) ( )Pr Coles twice Pr Pr PrCCSS CSCS CSSC= + +     M1 
 0.65 0.35 0.45 0.35 0.55 0.35 0.35 0.45 0.55= × × + × × + × ×  
 0.2564=         A1 
 
iii. ( ) ( ) ( ) ( )Pr Coles 3 times Pr Pr PrCCCS CCSC CSCC= + +  

 20.65 0.35 0.65 0.35 0.55 0.35 0.55 0.65= × + × × + × ×  
 0.3918=         A1 
 
 ( ) ( )Pr Coles 4 times Pr CCCC=  

 30.65=  
 0.2746=         A1 
 

Number of 
times at Coles 

1 2 3 4 

Probability 567 0.0709
8000

=
2051 0.2564
8000

=
637 0.3918

1600
=  2197 0.2746

8000
=

 
 Expected number of times at Coles   

 ( ) 567 2051 637 21971 2 3 4
8000 8000 1600 8000

E C = × + × + × + ×  

 ( ) 5753
2000

E C =            A1 

 

b. 
0.61 0.61

Now as
0.38 0.38

nn A
⎡ ⎤

→ ∞ → ⎢ ⎥
⎣ ⎦

� �
� �      or    0.55 110.61

0.55 0.35 18
= =

+
�  

 so the  steady state probability that they go to Coles is  11
18

    A1 
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c.i. ( )50, 0.08X Bi n p= =∼  
 

 
( ) ( )

( )
Pr 1 4

Pr 5 | 1
Pr 1

0.61348
1 0.01547

X
X X

X
≤ ≤

< ≥ =
≥

=
−

              M1 

 0.6231=             A1 
 
 
ii. ( )70, ?X Bi n p= =∼  

 ( ) ( )var 70 1 4.557X npq p p= = − =  
 solving for p since  
 0 1 gives 0.07 or 0.93p p< < =              M1 
 Since  ( ) 5E X <           
 0.07p =             A1 
 
 
 
iii. ( )40, ?X Bi n p= =∼  

 

( ) ( )

( ) ( )

( ) ( )

38 372 3

372

Pr 2 Pr 3 0.47

40 40
1 1 0.47

2 3

260 1 35 3 0.47
solving numerically using CAS,
with 0 1

X X

p p p p

p p p

p

= + = =

⎛ ⎞ ⎛ ⎞
− + − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⇒ − − + =

< <

       M1 

 0.0521p⇒ =           A1 
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d. X  is the time in minutes spent shopping, ( )2?, ?X N μ σ= =∼  

 ( ) ( )1 Pr 50 0.2X > =         M1

 ( ) ( )2 Pr 36 0.37X < =      
  

 ( ) 501 0.842μ
σ
−

⇒ =    

     

 ( ) 362 0.332μ
σ
−

⇒ = −    

     
 ( )1 50 0.842μ σ− =        

 ( )2 36 0.332μ σ− = −         M1
  
 now subtract equations  ( ) ( )1 2−  

 14 1.174 σ=  
 12 minutesσ =          A1 
 substituting gives  
 40 minutesμ =          A1
      
 
Question 3 
 

a. arc length but 2l r l rθ π= =  circumference of base circle of the cone 

 ( ) 62 12 1r r θπ θ
π

= ⇒ =         A1 

  Pythagoras    ( ) 2 2 22 12 144h r⇒ + = =        

 ( )
2 2

2 2
2

6 362 144 144 144h r θ θ
π π

⎛ ⎞= − = − = −⎜ ⎟
⎝ ⎠

     M1 

( )

( )

2 2 2 2 2
2

2

2
2 2

2

2
2 2

2

36 64 so that 4 since 0

1Now volume of cone
3

36 6 4
3

72 4 shown

h h h

V r h

V

V V

π θ π θ
π π

π

π θ π θ
π π

θθ π θ
π

= − = − >

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

= = −

   M1 
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b. 
( )2 2

2 2 2

72 8 3

4
dV
d

θ π θ
θ π π θ

−
=

−
   by CAS       A1 

 for max/min 0dV
dθ

=  solving, since 0θ >    2 6
3

πθ⇒ =   by CAS  A1 

 3
max

2 6 128 3 cm
3

V V π π
⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠

 by CAS      A1 

                         

 
 
 
 
 
 
 
 
 
 

c. Numerically solving  ( )
2

2 2
max 2

1 7264 3 4
2

V V θθ π π θ
π

= ⇒ = −   A1 

 for since 0θ θ π< <    2.93θ⇒ =        A1 
 

 
d. r and h are now the radius and height respectively of the mousse in the cone,  

 given that 30.5 cm /sec find when 4 cmdV dh h
dt dt

= − =      

( )21 and tan 2 2
3

rV r h r h
h

π α= = = ⇒ =  substituting      A1 

 
3

22 2
3
h dVV h

dh
π π= ⇒ =        M1 

2

0.5
2

dh dh dV
dt dV dt hπ

−
= =  

 

1when 4 cm/sec
64

dhh
dt π

= = −  or falling at a rate of  1 cm/sec
64π

  A1 
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Question 4 
 

a. ( ) 1 1,y f x R r
x r

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

 ( ) ( )2 2

1 1dy f x f r
dx x r

′ ′= = − = −        A1 

 the equation of the tangent at R is 
 

 ( )2 2

1 1 1xy x r
r r r r

− = − − = − +  

 2

2xy
r r

= − +  

 2

1 2andm c
r r

= − =         A1 

 

b. 1 1 1, , , ,P p Q q R r
p q r

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 Since M is the midpoint of PQ   ( )1 1 1 1,
2 2

M p q
p q

⎛ ⎞⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
    A1 

 
( )

1 1 1
2 1gradient 1
2

p q
p q pqOM

p q pqp q

⎛ ⎞ ++⎜ ⎟
⎝ ⎠= = =

++
      A1 

 2

1
1 1gradient gradientrOR OM

r r pq
= = = =  

 2so that shownr pq=         A1 
 
 

c. 

1 1
1gradient

p q
q p pqPQ
q p q p pq

−−
= = = −

− −
      A1 

 ( ) 2
1 1 fromf r
r pq

′ = − = −  a. and b.       A1 

 so the tangent to the curve at R, is parallel to the line segment joining P and Q. 
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d. 1
q

p

A dx
x

= ⌠⎮
⌡

 

 
( ) ( )log log log since 0

log

q
e e ep

e

A x q p q p

qA
p

⎡ ⎤= = − > >⎣ ⎦

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

     A1 

e. 1Area
r

p

dx
x

= ⌠⎮
⌡

 

 ( ) ( )Area log log log
r

e e ep
x r p⎡ ⎤= = −⎣ ⎦  since 0q r p> > >     A1 

 Area loge
r
p

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 now from b. since  r pq=  

 

1
2

Area log log loge e e
pq q q
p pp

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

     A1 

 1 1Area log
2 2e

q A
p

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
        A1 

 

f. The line OP is 2 for 0xy x p
p

= ≤ ≤ , the line OQ is 2 for 0xy x q
q

= ≤ ≤   A1 

 the area between the curves is 

 2 2 2

0

1
p q

p

x x xB dx dx
p q x q

⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⌠ ⌠
⎮ ⎮
⌡ ⌡

 

 ( ) ( )2 2 2

1andx x xg x h x
p q x q

= − = −       A1 

 

g. 
2 2 2

2 2 2
0

log
2 2 2

p q

e
p

x x xB x
p q q

⎡ ⎤ ⎡ ⎤
= − + −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

 ( ) ( )
2 2 2 2

2 2 2 2log log
2 2 2 2e e
p p q pB q p
p q q q

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + − − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
    M1 

 
2 2

2 2

1 1log
2 2 2 2e

p q pB
q p q

⎛ ⎞
= − + − +⎜ ⎟

⎝ ⎠
     

 loge
qB A
p

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
         A1 
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