Mathematical Association of Victoria Trial Exam 2010

MATHEMATICAL METHODS (CAS)

Written Examination 1

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

Note

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 10 pages, with a detachable sheet of miscellaneous formulas at the back
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the back of this book during reading time.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

This page is blank

Ouestion	- 1
Question	

a.	If $Pr(A) = 0.3$ and $Pr(B) = 0.6$ and events A and B are independent, find $Pr(A' B)$.	
		2 marks
b.	If there are two black socks and four white socks in a drawer and two socks are drawn without replacement, what is the probability that they are both the same colour?	
0	estion 2	2 marks
Qu a.	For $f(x) = (\sin(2x) + 1)^2$, evaluate $f'(\frac{\pi}{2})$.	

3 marks

b.

	,.			
Let $y = (x^2 - 2)$ i. Find $\frac{dy}{dx}$.				
dx				
ii. Hence find	an antiderivativ	we of x^2e^x .		
ii. Hence find	an antiderivativ	we of x^2e^x .		
ii. Hence find	an antiderivativ	we of x^2e^x .		
ii. Hence find	an antiderivativ	we of x^2e^x .		
ii. Hence find	an antiderivativ	we of x^2e^x .		
ii. Hence find	an antiderivativ	we of x^2e^x .		
ii. Hence find	an antiderivativ	we of x^2e^x .		
ii. Hence find	an antiderivativ	we of x^2e^x .		
ii. Hence find	an antiderivativ	we of x^2e^x .		

Question 3

Let $f:(0,\infty)\to R$, $f(x)=1+\frac{1}{x^2}$

a. Consider the shaded region, bounded by the graph of f, the x-axis and the lines with equations x = 1 and x = 7

i. Show that the area of the shaded region is $\frac{48}{7}$.

ii.	Hence find	the average	value of	f over the	interval	[1,]	71.

2 + 1 = 3 marks

b.	Find the domain and rule of the inverse function, f .
	,
	3 marks
0	setion A
A c	estion 4 ylindrical fuel storage tank has a radius of 4 metres. Fuel enters the tank at a constant rate of 32 m ³ /hour. what rate is the height of fuel rising in the tank, in m/hour?
	3 marks
	estion 5
A b	inomial random variable, X has a mean of 3 and a variance of $\frac{3}{4}$. Find $Pr(X = 2)$.

Working Space

Question 6

The graph of f is shown, where

$$f(x) = \begin{cases} 2x & \text{if } 0 \le x \le 6\\ 30 - 3x & \text{if } 6 < x \le 10 \end{cases}$$

Consider the inscribed rectangle shown, with vertices P(a,0), Q(a,f(a)), R(b,f(b)) and S(b,0), where $0 \le a \le 6$ and $6 < b \le 10$.

a. F	ind an	expressi	on fo	$\mathbf{r} h$	in	terms	α f α

1 mark

b. Show that the area of the rectangle, A, is given by

$$A = 20a - \frac{10a^2}{3}.$$

2 marks

c.	Find the value of a for which the area of the rectangle is a maximum. Hence find the maximum area of the rectangle.
	2 marks
	estion 7
	transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with rule
T	$ \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} -\pi \\ 3 \end{bmatrix} $
	by the curve with equation $y = \cos(x)$ onto the curve with equation $y = h(x)$. Find an expression for
h(.	
	3 marks

Question 8

Let $f:[0,2] \to R$, where $f(x) = (x-1)^{\frac{2}{3}}$

a. Find f', the derivative of f

b. The graph of f is shown on the set of axes below. Sketch the graph of f' on the same set of axes, labelling any asymptote with its equation and labelling any endpoints with their coordinates.

3 marks

Question 9

A Markov chain has a transition matrix $T = \begin{bmatrix} 0.2 & 0.9 \\ 0.8 & 0.1 \end{bmatrix}$. In the long term, the steady state matrix will be

 $\begin{bmatrix} x \\ 1-x \end{bmatrix}$ where $0 \le x \le 1$. Find the value of x.

2 marks

Let $g: R^+ \to R$, $g(x) = x - \log_e(x)$.
The equation of a tangent to the graph of g is $y = -\frac{x}{2} + k$.
Find the value of k .
4 mark

END OF QUESTION AND ANSWER BOOK

Mathematical Methods (CAS) Formula Sheet

Mensuration

area of a trapezium:

 $\frac{1}{2}(a+b)h$

volume of a pyramid:

curved surface area of a cylinder:

 $2\pi rh$

volume of a sphere:

volume of a cylinder:

 $\pi r^2 h$

area of a triangle:

volume of a cone:

 $\frac{1}{2}\pi r^2 h$

Calculus

$$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$$

$$\frac{d}{dx}\left(\sin(ax)\right) = a\cos(ax)$$

$$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$$

$$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a \sec^2(ax)$$

product rule:
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

chain rule:
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

$$\int \frac{1}{x} dx = \log_e |x| + c$$

$$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$$

$$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$$

quotient rule:
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

approximation:
$$f(x+h) \approx f(x) + hf'(x)$$

Probability

$$\Pr(A) = 1 - \Pr(A')$$

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

transition matrices:
$$S_n = T^n \times S_0$$

mean:
$$\mu = E(X)$$

$$var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$$

prob	probability distribution		variance
discrete	$\Pr(X=x)=p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
continuous	$Pr(a < X < b) = \int_{a}^{b} f(x)dx$	$\mu = \int_{-\infty}^{\infty} x \ f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$