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MARKING SCHEME (EXTENDED ANSWER QUESTIONS) 
 

• ( A ↓×
2
14 ) means four answer half-marks rounded down to the next integer.  

Rounding occurs at the end of a part of a question.  
 
• M1 = 1 Method mark. 

• A1 = 1 Answer mark  (it must be this or its equivalent). 

• H1 = 1 consequential mark (His/Her mark…correct answer from incorrect statement  
or slip). 
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QUESTION 1    
  

The vertical asymptote of a rational function occurs when the denominator (bottom line) of 
the fraction is zero. So ( )x b+ must be the bottom line. The rest of the equation (ignoring the 
fraction) must read y a=  for the horizontal asymptote.   
 
The answer is D. 
 
 

QUESTION 2 
 

The graph of 2( ) 3 18 1f x x x= + +  is shown below. 
 
 

                                   
 
 
An inverse function exists if the function is one-to-one. The turning point of ( )f x  occurs at   

3x = −  so any interval to the left of this value, or right of it, will ensure that the function is 
one-to-one.   
 
The answer is C. 
 
 
QUESTION 3 
 

Because the graph touches the x-axis at x b=  there must be a factor of ( )2bx −  in the 
equation.  
 

)( cx −±  is also a factor as is   )( ax −± . The choices are between D or E.  
 
Y Intercept: 
 
Substituting 0x =  into 2( )( ) ( )y x a x b x c= − − −  gives the value cab2 which is negative as 

0a < . As the graph cuts the y-axis at a negative value, this is consistent with option D. 
 
The answer is D. 
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QUESTION 4 
 

( ) 1( ) log 1 1
1eg h x

x
⎛ ⎞

= + −⎜ ⎟⎜ ⎟+⎝ ⎠
 

 

             
1log

1e x
⎛ ⎞

= ⎜ ⎟⎜ ⎟+⎝ ⎠
 

 

             log 1 log ( 1)e e x= − +  
 

             log ( 1)e x= − +  
 
The domain of g (h(x)) is the same as the domain of h(x) which is R / {−1}.  
 
 

The answer is E. 
 
 
 

QUESTION 5 
 

Let xam =  in the equation 2 5 4 0x xa a− + = . 

Then 0452 =+− mm  and so 0)1)(4( =−− mm . 

Therefore 4m =  and so 4xa =  which means that log 4ax =  

Also 1m =  and so 1xa =  which means that log 1 0ax = = . 
 
The answer is E. 
 
 
QUESTION 6 
 

2log ( )e x  is defined for R / {0}  and log (1 )e x−  is defined for ( -  , 1 )∞ . 
The expression is defined for the intersection of these two sets which is ) 1 ,0(    ) 0 ,( ∪−∞ . 
 
The answer is C. 
 
 

QUESTION 7 
 

3log2)1(log2)1(log4 3
4

33 +−=+− xx  
 

      4 2
3 3log ( 1) log 3x= − +  

                          4
3 3log ( 1) log 9x= − +  

                          4
3 )1(9log −= x  

 
Therefore 2  )1(log4 33 +−x 4

3log 9( 1)3 x  −= 49( 1)x= −  
 
 

The answer is A. 
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QUESTION 8 
 

2 24 4a a a a− = −  

              2 2( 4 ) 4a a a a= − − = −  
 
To solve 2 4 4a a− = , find the points of intersection of the graphs 2 4y a a= −  and 4y = . 
 

 
 
Either 442 =− aa  or 24 4a a− =  
 

If 442 =− aa  then 0442 =−− aa  so  
2

324 ±
=a = 222 ±  

 
If 24 4a a− =  then 0442 =+− aa . Hence 2=a . 
 
From the graph, 4 42 ≥− aa  if  222 +≥a  or 2=a  or 222 −≤a  
 
 

The answer is C. 
 
 
QUESTION 9 
 

22sin ( ) 3 3cos( )θ θ= −  

0)1))(cos(1)cos(2(
01)cos(3)(cos2
)cos(33)(cos22
)cos(33))(cos1(2

2

2

2

=−−
=+−

−=−

−=−

θθ
θθ

θθ

θθ

 

 
Hence cos( ) 0.5θ =  or cos( ) 1θ =  

For  π θ π− ≤ ≤ , cos( ) 0.5θ =  has solutions 
3

,
3

ππ
−  and cos( ) 1θ =  has solution 0 . 

 

The answer is C. 
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QUESTION 10 
 

If )cos(3)sin()( xbxaxf −=  then )sin(3)cos()( xbxaxf +=′   

)sin(3)cos(0 xbxa +=  at any turning points. 

)cos()sin(3 xaxb −=  

3
)tan(

)cos(
)sin(

b
ax

x
x

−==   

Now 3
3

tan =⎟
⎠
⎞

⎜
⎝
⎛π  and so 3

3
=−

b
a

 

 

Therefore ba 3−=  and so the answer is either alternative C or D.  
 
Only alternative D gives a minimum value at the required value of x .  
 
The answer is D. 
 
 
QUESTION 11 

Using the Quotient Rule:  2

)()2(log))2((log

x

x
dx
dxx

dx
dx

dx
dy ee ×−×

=  

                                                  2x

1  )2(log
2
2    ×−×

=
x

x
x e

 
 

                                                   2

)2(log1
x

xe−
=  

 
The answer is B. 
 
 
QUESTION 12 
 

If 3 24 7 5y x x x= − + −  then  dy
dx

= 3x2 – 8x + 7   
 

At 2x = ,   dy
dx

= 3 × 4 – 8 × 2 + 7  3=  
 

Gradient of tangent is 3 . Therefore, gradient of the normal is – 1
3

 .  

As 1y =   at 2x = : 

Equation of the normal is:    y – 1 = – 1
3

(x – 2)   

     3y – 3 = – x + 2   
     053 =−+ xy  
 

The answer is E. 
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QUESTION 13 
 

∫ ∫ −−=−
1

3

3

1

))(35())(35( dxxfdxxf  

                       ∫ −=
3

1

)5)(3( dxxf  

                       ∫ ∫−=
3

1

3

1

5)(3 dxdxxf  

                       [ ] 3
1 5103 x−×=  

                       
20

)515(30
=

−−=  

                     
The answer is D. 
 
 
QUESTION 14 
 

The function g (x) is obtained from f (x) through the following three transformations: 
 
• A dilation from the x – axis (or parallel to the y – axis) by a factor of 5 which results in 

the minimum value being at (2 3, 5)− . 
 

• A reflection in the y – axis which now means that the minimum is at ( 2 3, 5)− − . 
 

• Finally there is a translation of 1 unit to the right which results in the minimum now 
being at ( 2 3 1, 5)− + −  

 
The answer is A. 
 
 
QUESTION 15 
 

)(log
)(
)( xfdx

xf
xf

e=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
∫  and so dxe

x
x  

21
2 13∫ ⎟

⎠
⎞

⎜
⎝
⎛ +
−

+ 3 11log 2 1
3

x
e x  e c+= − − + +  

 
The answer is C. 
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QUESTION 16 
 

 
 
 
The graph shown above resembles that of a 
cubic function and so its derivative function 
will resemble a parabola.  
 
The gradient on the left and right of the 
function is positive and so the best 
alternative is shown alongside. 
 

          

The answer is B. 
 
 
QUESTION 17 
 

3( ) (2 1) xf x x e= −  
 

Substitute 0x =  into (2x – 1) e3x :  – 10 −=e   

 

Substitute 2x =  into (2x – 1) e3x :  63e  
 

The average rate of change is 
02

)1(3 6

−
−−e

= 
2

13 6 +e
 

 
The answer is D. 
 
 
QUESTION 18 
 

If two events X and Y are independent then )Pr().Pr()Pr( YXYX =∩ . 
 
Now {2, 4}, {3}, {6}, {1, 2, 5}, {2,10}A B A C B C A D B D= = = = =∩ ∩ ∩ ∩ ∩  
 
 

Test whether: 
 

)Pr()Pr().Pr( BABA ∩= ?     Left side = 
4
1

10
5

10
5

=×   Right side = 
10
2

  No! 
 

)Pr()Pr().Pr( CACA ∩= ?      Left side = 
20
3

10
3

10
5

=×   Right side = 
10
1

  No! 
 



 
©  The School For Excellence 2009    Complimentary Mathematical Methods – Examination 2    Page 8 

)Pr()Pr().Pr( CBCB ∩= ?      Left side = 
20
3

10
3

10
5

=×   Right side = 
10
1

  No! 
 

)Pr()Pr().Pr( DADA ∩= ?     Left side = 
5
1

10
4

10
5

=×   Right side = 
10
3

  No! 
 

)Pr()Pr().Pr( DBDB ∩= ?     Left side = 
5
1

10
4

10
5

=×   Right side = 
5
1

10
2
=   Yes! 

 
The answer is E. 
 
 
QUESTION 19 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Probability of rain on Wednesday  = 
100

2.08.08.0 p
×+×  

                                                       = 
1000
2

100
64 p

+  
 

1000
2

100
64

100
65 p

+=  and so 5p = . 

 
The answer is A. 
 
 

 

Rain* 

Rain 

No Rain 

 

Rain* 

0.2 

0.8 

0.2 

Wednesday 

 
 

p% 

Tuesday 

0.8 

Rain 
Monday 



 
©  The School For Excellence 2009    Complimentary Mathematical Methods – Examination 2    Page 9 

QUESTION 20 
 

Binomial Distribution with np = 5 and npq = 4  
 

So 5q = 4 (substituting np = 5). Therefore q = 
5
4

 which gives p = 
5
1

 

If  p = 
5
1

 then 5
5
=

n
 and so n = 25 

 

325 =−=−σμ  and 725 =+=+σμ  and so find the Binomial cdf for 7  3 ≤≤ X  . 
 

This is binomcdf(25, 0.2, 7) – binomcdf(25, 0.2, 2) = 0.8909 – 0.0982 = 0.7927     
 
The answer is A. 
 
 
QUESTION 21 
 

(4, 5, 5, 0.5) 0.4772499Normalcdf =  
 

0.4772499Pr( 4 | 5) 0.954499
0.5

X X> < = =  
  
 

The answer is E. 
 
 
QUESTION 22 
 
The sum of the probabilities is 1.  
 

Therefore 1
2

dx 
00

2 =⎥⎦
⎤

⎢⎣
⎡=∫

bb

xaax  and so 1
2

2

=
ab

         (Equation 1) 

Now 
4
3

0
0.5ax dx =∫   

 

5.0
2

3
4

0

2 =⎥⎦
⎤

⎢⎣
⎡ xa

 and so 
2
1

9
16

2
=×

a
.    (Equation 2) 

Hence 
9

16
a =   

Substituting for a  in equation 1 gives 
9
322 =b  and so 

3
24

=b . 
 

The answer is B. 
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SECTION 2 — EXTENDED ANSWER QUESTIONS 
 

 

QUESTION 1 
 
a.   2)(1)(2)()(' bxbxaxxf −×+−×+=   (using the Product Rule)   M1 

             
)23)((

)]()(2)[(
baxbx

bxaxbx
−+−=

−++−=
       A1  

            
3
2or     if  0 abxbx −

===         A1 

 
 Since 0)1( =′f  then b  could be 1. If this is the case, see if 4a =  satisfies the other  

  stationary value.  
3
21

3
7 a−
=−  so a217 −=−  which means that 4a = , as req.   M1 

 
b.    2)1)(4()( 2 +−+= xxxf  
 

        When 1x = , 2(1 4)(1 1) 2 2y = + − + =  and so the turning point is at (1, 2) .   A1 
 

c. When 2)1
3
7)(4

3
7(  ,

3
7 2 +−−+−=−= yx  20.52=  and so 20.52c =     A1 

 
d.     The lines 2y =  and 20.52y =  have been drawn showing that each of them meets the 
        graph at two points. 
 

 
 

 
      

 
 
 If  2 20.52m< <   then the equation ( )f x m=  will have three distinct solutions. 

 

A ↓×
2
14 (2 , < , <, 20.52) 



 
©  The School For Excellence 2009    Complimentary Mathematical Methods – Examination 2    Page 11 

e.  If the turning points of ( )f x  are at (1, 2)  and ⎟
⎠
⎞

⎜
⎝
⎛− 52.20 ,

3
7

 then the horizontal  

 distance between them is 
3

10
3
71 =−−  units. This would need to be multiplied by 3 to 

  give the required result of being 10 units apart. Hence 3k = . 
 

M1 (horizontal distance idea)    
A1 (k = 3) 

 
f.     (-7, 20.52) and (3, 2)                A2 (1 for each pair) 

 
Total = 12 marks 

 
QUESTION 2 
 
a.   Total area = Two end semi-circles + flat surface + curved surface    M1 
       

 21 12 ( ) 2 2
2 2

A  r r h  r  hπ π= × + × + ×   

  2 2A  r rh  r hπ π= + +            A1 
 

b.    Volume = 500  = hr 2 
2
1π  and so 2

1000
r

h
π

=       A1 
 

       2 2A  r rh  r  hπ π= + +   

            2 (2 r r  r )hπ π= + +  

  2
2

1000(2 r r  r )
 r

π π
π

= + + ×         M1 

            2
2

1000(2 r  )r
 r

π π
π

= + + ×  which when cancelling the r  gives  

         
r

rA )2(1000 2

π
ππ +

+= , as required. 

 

c.   12 )2(1000 −×
+

+= rrA
π

ππ  
 

       2)2(1000 2 −×
+

−= rr
dr
dA

π
ππ                    H1

     

             0=   for a minimum value 

       Therefore  )2(10002 32 ππ +=r  and so 
3
1

22
)2(1000
⎟
⎠
⎞

⎜
⎝
⎛ +

=
π

πr  = 6.39 cm    A1   

 
d.    384.40 cm2  (do not accept 384.4 cm2 )         A1 
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e.     C = p( rhr 2 2 +π ) +q 2 
1000 

r
r

π
π ××  = p( 2

2 10002 
r

rr
π

π ×+ ) +q 2 
1000 

r
r

π
π ××   M2 

 

                                                           (Give a method mark for each part, curved and flat) 

        =∴C p ⎟
⎠
⎞

⎜
⎝
⎛ +

r
r

 
2000 2

π
π + 

r
1000

q         

 

f.     =
dr
dC

p 22

1000
 

2000 2
rr

r −⎟
⎠
⎞

⎜
⎝
⎛ −

π
π q        H1 

 

       For minimum cost 0=
dr
dC

 and so pr  2π  = 2

 10002000
r

qp
π

π+
    M1 

       Hence 
3
1

22
)2(1000
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

p
qpr

π
π

        A1 

 
 

g.    i.   $8578 
 ii.   7.79 cm           A2  
 

h.    Since 2 
1000

r
h

π
=  then if 10h = ,  r = 

π
100

 (= 5.64 cm to 2 decimal places).    A1 

 

     
 
  
  The minimum cost occurs when 5.64r cm= , and is approximately $9396.   A1 
 

Total = 16 marks 



 
©  The School For Excellence 2009    Complimentary Mathematical Methods – Examination 2    Page 13 

QUESTION 3 
 

a.    Invnorm(0.8) = 
q

p−94
  and  Invnorm(0.99) = 

q
p−122

     M1 

         

 0.842 94q p= −              and  2.326 122q p= −       A1 
 
b.   (i)   0.842 94q p= −  
 

 (ii)   2.326 122q p= −  
 
        Taking (i) from (ii) gives 28484.1 =q and so 18.8679...q = which rounds to 18.9  as 
         required.  
 
         Substituting for q in (i) gives 78.113p =  which rounds to 78.1 , as required.  M1 
 

         Normalcdf(–1010, 80, 78.1, 18.9) = 0.5400 so the answer is 54%   A1 
 

 
c.     Normalcdf (100, 1010, 78.1, 18.9) = 0.12328      A1 
 

        Required probability = 
46.0

12328.0
        M1 

 

                                         0.268=         A1 
 
 

d.     
Recorded speed of car Amount of penalty Probability 
Below 80 km/h zero 0.54 

From 80 km/h to under 100 km/h $220 0.34 

From 100 km/h to under 110 km/h $440 0.08 

Over 110 km/h $500 0.04 or 0.05 
 

(A ↓×
2
14 ) 

 

e.   Mean = 
0 0.54 $220 0.34 $440 0.08 $500 0.04

0.46
× + × + × + ×

     M1 

               
(0 68 35.2 20)

0.46
+ + +

=  
 

      
123.2
0.46

=  
 

               $270=  to the nearest $10 (or $280 if 0.05 was used)    A1 
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f.     The proportion of the population exceeding 100 km/h is 0.12 (from the table). 

        Hence  4812.0 =x  and so 400
12.0

48
==x .      M1 

        400 cars pass in the hour.        A1 
       
       If students use 0.13 then the mark scheme is: 
 
       The proportion of the population exceeding 100 km/h is 0.13 (from the table). 

        Hence  4813.0 =x  and so 23.369
13.0

48
==x .      M1 

        369 ( or 370) cars pass in the hour.       A1 
 

 

g.    Pr( Speeding) = 0.46 
       
 Binomial Distribution:  6)54.046.0( +          M1 
      
 Pr(at least two) = Pr(2) + Pr(3) + Pr(4) + Pr(5) + Pr(6)  or  1 – [ Pr(0) + Pr(1)]   A1 

                          6 56
1 0.54 0.54 0.46

1
⎡ ⎤⎛ ⎞

= − + × ×⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 

                     0.8485=         A1 
 
 

Total = 16 marks 
 
QUESTION 4 
 
a.    i.   cos xy e=   

             Let )sin( so and )cos( x
dx
duxu −==        M1 

            uu e
du
dyey ==  so and  

             
dx
du

du
dy

dx
dy

×=  
 

                     
)cos(

)cos(

)sin(
)sin(

x

x

ex
xe

−=

−×=
         A1 

 

     ii.   [ ]π
π

0
)cos()cos( 2)sin(2 x

o

x edxex −=∫        A1 

                                          )(2 11 ee +−= −        A1 
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b.     i.   )cos()sin()( xexxf = uv=  

             Let sinu x=  and cos xv e=   then )cos(x
dx
du

=  and )cos()(sin xex
dx
dv

−=   M1 

           
dx
dvu

dx
duvxf +=′ )(   = )cos()cos( xex  − )cos(2 )(sin xex     A1 

 
     ii.    If  ( ) 0f x′ =  then )cos()cos( xex  − 2 cos( )sin ( ) 0xx e =  
           
   Therefore  )(cos()cos( xe x  − ))(sin2 x = 0 
            

   Now )cos(xe  can never be zero so 0)(sin)cos( 2 =− xx      
              

   Hence 0))(cos1()cos( 2 =−− xx  and so 01)cos()(cos2 =−+ xx    M1 
           

   Using the quadratic formula, 
1 1 4cos( )

2
x − ± +
=       A1 

            

   One of these values corresponds with what needed to be found. 
 

c.    ))(( xgf  = )1(cos2 2

 . )1(sin ++ xex        A1 
 
d.  i.      

  `  
 
              Intercepts (0, 1.44), (2.98, 0), (6.20, 0). Coordinate format not necessary here. A1 
 

  Shape with two points of intersection at approximately (0.7, 1.3) and (5.3, -1.4) H1 
  
      ii.   (0.65, 1.34) and (5.33, 1.46)       A1 
 

e.  ∫∫ ∫∫ +−++−
ππ 2

20.698.2

20.6

33.5

98.2

65.0

)())](()([)())](()([ dxxfdxxfgxfdxxfdxxfgxf    

       
 The two “difference integrals” with correct lower terminals.     M1 
 All four integrals correct.          A1 
 

Total = 14 marks 


