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Question 1 
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Question 2 
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         M1  

but 2x > −  so there is only one answer  4x =      A1 

 

Question 3 
 

For the function to be differentiable it must be continuous and the gradients must match. 

( )2 4 2 2 3f a a m= = = +         M1 
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2a =            A1 
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Question 4 

a.           G1 
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b. ( )2
3

0
2 4A x x dx= −∫      by symmetry      
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( ) ( )2 8 4 0A = − −    

 28 units=          A1 

 

Question 5 
 

( )21
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xf y e−= −    interchanging y and x 

( )1 21
1

3

yf x e− −= −    transposing to make y the subject    M1 

1 23 1 yf x e− −= −       2 1 3ye x−⇒ = −      ( )2 log 1 3ey x⇒ − = −  

( ) ( )1 1 1 1
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2 2 1 3
e ey f x x

x

−  = = − − =  − 
     A1 

the domain of  1f −  , needs to be stated as we are asked for a function  
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Question 6 
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π π
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     M1  
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dt dh dt
= ( )210

50
15

h h
π

= +     M1 
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Question 7 

a. ( )3

0
sin 3 1k x dx

π
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d
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dx
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3 sin 3 cos 3 cos 3 sin 3 cos 3

3
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sin cos sin 0 0

2 3 3 3
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Question 8 
 

 

X 1 2 
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( )sin 1k = −   not possible, since, probabilities must be positive  A1 
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2
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Question 9 
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Question 10 

a. 
3

2
x = −  is a vertical asymptote,    1y =  is a horizontal asymptote 
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crosses the x-axis, when  ( )20, 2 3 4 2 3 2y x x= + = + = ±  

1 5
2 1, 5 ,

2 2
x x= − − = − −   

1 5
, 0 , 0

2 2

   − −   
   

    

 correct graph, correct axial intercepts and correct asymptotes  G1 
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Question 11 
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