

THE SCHOOL FOR EXCELLENCE **UNIT 3 & 4 MATHEMATICAL METHODS 2008 COMPLIMENTARY WRITTEN EXAMINATION 1 - SOLUTIONS**

Errors and updates relating to this examination paper will be posted at www.tsfx.com.au/examupdates

QUESTION 1

Construct a Karnaugh Table:

		A	A'
Ī	В	а	b
Ī	B'	c	d
		$\frac{1}{2}$	$\frac{1}{2}$

	A	A'	
В	$Pr(A \cap B)$	$Pr(A' \cap B)$	Pr(B)
<i>B</i> '	$Pr(A \cap B')$	$Pr(A' \cap B')$	Pr(B')
	Pr(A)	Pr(A')	

Required to find:
$$Pr(A | B') = \frac{Pr(A \cap B')}{Pr(B')} = \frac{c}{c+d}$$
 (1)

$$\Pr(A' \mid B) = \frac{1}{3}$$

$$\frac{\Pr(A' \cap B)}{\Pr(B)} = \frac{b}{a+b} = \frac{1}{3}$$

$$\therefore 2b = a \qquad \qquad \dots (2)$$

$$\Pr(A \cup B) = \frac{3}{5}$$

$$1 - d = \frac{3}{5}$$

$$\therefore d = \frac{2}{5}$$

From the Karnaugh Table:
$$d = \frac{2}{5}$$

$$b + \frac{2}{5} = \frac{1}{2}$$

$$\therefore b = \frac{1}{10}$$

Substitute
$$b = \frac{1}{10}$$
 into (2): $a = \frac{1}{5}$

From the Karnaugh Table:
$$a = \frac{1}{5}$$

$$\frac{1}{5} + c = \frac{1}{2}$$

$$\therefore c = \frac{3}{10}$$

Substitute
$$d = \frac{2}{5}$$
 and $c = \frac{3}{10}$ into (1):

$$\Pr(A \mid B') = \frac{\frac{3}{10}}{\frac{3}{10} + \frac{2}{5}} = \frac{3}{3+4} = \frac{3}{7}$$

4 marks

QUESTION 2

(a)
$$x(x^3 - 2x - 1) = 0$$

 $\Rightarrow x(x+1)(x^2 - x - 1) = 0$

$$x = 0$$
 or $(x+1) = 0$ or $(x^2 - x - 1) = 0$

$$\therefore x = 0 \qquad \qquad \therefore x = -1 \qquad \qquad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Therefore: x = 0, -1, $\frac{1 \pm \sqrt{5}}{2}$.

2 marks

(b)
$$f(x) = x^4 - 2x^2 - x$$

 $f'(x) = 4x^3 - 4x - 1$
 $f'(1) = 4(1)^3 - 4(1) - 1 = -1$

 $f'(-1) = 4(-1)^3 - 4(-1) - 1 = -1$

- (c) If the tangent is common to both points then the gradient to the curve has the same value at both points.
 - Part (b) suggests that the x-coordinates of the two points might be x = 1 and x = -1.

When
$$x = 1$$
: $y = f(1) = (1)^4 - 2(1)^2 - 1 = -2$

Equation of tangent at
$$(1,-2)$$
: $y-y_1 = m(x-x_1)$

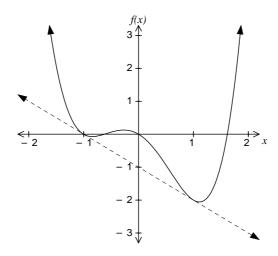
$$\Rightarrow y-(-2) = -1(x-1)$$

$$\Rightarrow y = -x-1$$

When
$$x = -1$$
: $y = f(-1) = (-1)^4 - 2(-1)^2 - (-1) = 0$

Equation of tangent at (-1,0): $y-y_1 = m(x-x_1)$

$$\Rightarrow$$
 $y = -1(x-[-1]) = -x-1$



2 marks

QUESTION 3

(a)
$$\log_b \left(\frac{5\sqrt{3}}{2} \right) = \log_b (5\sqrt{3}) - \log_b (2)$$

 $= \log_b (5) + \log_b (\sqrt{3}) - \log_b (2)$
 $= \log_b (5) + \log_b \left(3^{1/2} \right) - \log_b (2)$
 $= \log_b (5) + \frac{1}{2} \log_b (3) - \log_b (2)$
 $= r + \frac{1}{2} q - p$

(b) The $(r+1)^{th}$ term in the expansion of $(A+B)^n$ is $T_{r+1}=\binom{n}{r}A^{n-r}B^r$.

$$A = 3x$$
, $B = -\frac{4}{x^2} = -4x^{-2}$ and $n = 14$.

$$T_{r+1} = \binom{14}{r} (3x)^{14-r} \left(-4x^{-2}\right)^r = \binom{14}{r} (3)^{14-r} \left(-4\right)^r x^{14-r} x^{-2r} = \binom{14}{r} (3)^{14-r} \left(-4\right)^r x^{14-3r}$$

Since the coefficient of x^2 is required:

$$x^{14-3r} = x^2$$

$$14-3r = 2$$

$$\Rightarrow r = 4$$

Substitute r = 4 into $\binom{14}{r}(3)^{14-r}(-4)^r$ to get the coefficient of x^2 :

$${\binom{14}{4}(3)^{14-4}(-4)^4 = \binom{14}{4}(3)^{10}(-4)^4}$$
$$= {\binom{14}{4}(3^2)^5([-4]^2)^2 = {\binom{14}{4}(9)^5(16)^2}}$$

2 marks

QUESTION 4

Multiply both sides of the equation by 2^x : $(2^x)^2 - k = 2^x$ $\Rightarrow (2^x)^2 - 2^x - k = 0$

Substitute $w = 2^x$: $w^2 - w - k = 0$

Solve for w using the quadratic formula: $w = 2^x = \frac{1 \pm \sqrt{1 + 4k}}{2}$

Case 1: 1+4k=0 $\Rightarrow k=-\frac{1}{4}$

Case 2: No real solution if $2^x < 0$.

$$\Rightarrow 1 - \sqrt{1 + 4k} < 0$$

$$\Rightarrow -\sqrt{1 + 4k} < -1$$

$$\Rightarrow \sqrt{1 + 4k} > 1$$

$$\Rightarrow 1 + 4k > 1$$

$$\Rightarrow k > 0$$

Case 3: k = 0

(a) Let $y = x \log_e x$ and use the product rule: $\frac{dy}{dx} = \log_e(x) + 1$.

1 mark

(b)
$$I = \int_{a}^{2} \left| \log_{e} x \right| dx = \int_{a}^{1} -\log_{e}(x) dx + \int_{1}^{2} \log_{e}(x) dx = -\int_{a}^{1} \log_{e}(x) dx + \int_{1}^{2} \log_{e}(x) dx$$

Integration by recognition: $\frac{dy}{dx} = \log_e(x) + 1$ $\Rightarrow y = \int \log_e(x) + 1 \, dx$ $\Rightarrow x \log_e(x) = \int \log_e(x) \, dx + \int 1 \, dx$ $\Rightarrow \int \log_e(x) \, dx = x \log_e(x) - x$

Therefore: $I = -\left[x\log_e(x) - x\right]_a^1 + \left[x\log_e(x) - x\right]_1^2 = a\log_e(a) + 2\log_e(2) - a$

Compare $a \log_e(a) + 2 \log_e(2) - a$ with $\log_e(2\sqrt{2}) - \frac{1}{2}$:

$$\log_e(a)^a + \log_e(2)^2 - a = \log_e(2\sqrt{2}) - \frac{1}{2}$$

$$\log_e(a)^a(2)^2 - a = \log_e(2\sqrt{2}) - \frac{1}{2}$$

$$\therefore a = \frac{1}{2}$$

$$\begin{split} \text{Check:} \quad & \frac{1}{2} \log_e \left(\frac{1}{2} \right) + 2 \log_e (2) = -\frac{1}{2} \log_e (2) + \log_e \left(2^2 \right) = \log_e \left(2^{-1/2} \right) + \log_e \left(2^2 \right) \\ & = \log_e \left(2^2 \times 2^{-1/2} \right) = \log_e \left(2^{3/2} \right) = \log_e \left(2 \times 2^{1/2} \right) = \log_e \left(2 \sqrt{2} \right), \text{ as required.} \end{split}$$

$$\cos A \sin\left(\frac{\pi}{2} - A\right) + \cos\left(\frac{3\pi}{2} - A\right) \sin A$$

$$= \cos A \cos A + (-\sin A) \sin A$$

$$= \cos^2 A - \sin^2 A$$

$$= \cos^2 A - (1 - \cos^2 A)$$

$$= \cos^2 A - 1 + \cos^2 A$$

$$= 2\cos^2 A - 1$$

$$= a\cos^2 A + B$$

Where a = 2 and b = -1.

3 marks

QUESTION 7

Solve
$$t = \frac{2y-6}{2y^2-y+3}$$
 for y where $y = f^{-1}(t)$:

$$t = \frac{2y - 6}{2y^2 - y + 3}$$

$$\Rightarrow 2ty^2 - ty + 3t = 2y - 6$$

$$\Rightarrow$$
 2 $ty^2 - (t+2)y + 3t + 6 = 0$

Solve for *y* using the quadratic formula:

$$y = \frac{t + 2 \pm \sqrt{(t+2)^2 - 4(2t)(3t+6)}}{4t} = \frac{t + 2 \pm \sqrt{(-23t^2 - 44t + 4)}}{4t}.$$

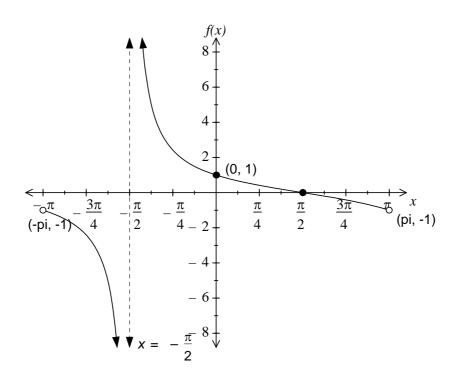
Decide which of the solutions to reject:

$$\left(-1,-\frac{4}{3}\right)$$
 is a simple point on $y=f(t)$ therefore $\left(-\frac{4}{3},-1\right)$ must satisfy $y=f^{-1}(t)$:

$$-1 = \frac{-\frac{4}{3} + 2 \pm \sqrt{(-23\left(-\frac{4}{3}\right)^2 - 44\left(-\frac{4}{3}\right) + 4}}{4\left(-\frac{4}{3}\right)} = \frac{\frac{2}{3} \pm \frac{14}{3}}{-\frac{16}{3}} = \frac{2 \pm 14}{-16}$$

Therefore the negative root solution is rejected and $y = \frac{t + 2 + \sqrt{(-23t^2 - 44t + 4)}}{4t}$.

Note that $f(x) = \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) = \tan\left(-\left[\frac{x}{2} - \frac{\pi}{4}\right]\right) = -\tan\left(\frac{x}{2} - \frac{\pi}{4}\right)$ which means that the reflection in the y-axis can be treated as a reflection in the x-axis.



3 marks

QUESTION 9

Find
$$r$$
 when $\frac{dV}{dt} = 75\pi \ cm^3 / min$

Chain rule:
$$\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$$

Substitute
$$V = \frac{4}{3}\pi r^3$$
: $\Rightarrow \frac{dV}{dr} = 4\pi r^2$

$$\frac{dV}{dt} = 4\pi r^2 \times \frac{dr}{dt}$$

Substitute
$$\frac{dr}{dt}=0.75$$
 and $\frac{dV}{dt}=75\pi$: $75\pi=4\pi r^2\times0.75$
$$\Rightarrow 4r^2=\frac{75}{0.75}=100$$

$$\Rightarrow r^2=25$$

$$\Rightarrow r=5\,cm$$

(a)
$$y = \frac{\cos x}{e^{2x}}$$

Apply Quotient Rule:

$$\frac{dy}{dx} = \frac{\left(e^{2x} \times -\sin x\right) - (\cos x \times 2e^{2x})}{\left(e^{2x}\right)^2} = \frac{-e^{2x} \sin x - 2\cos xe^{2x}}{\left(e^{2x}\right)^2}$$
$$= \frac{-e^{2x} (\sin x + 2\cos x)}{\left(e^{2x}\right)^2} = \frac{-(\sin x + 2\cos x)}{e^{2x}}$$

2 marks

(b)
$$f(x+h) \approx f(x) + hf'(x)$$

Let
$$x = 1$$

Let $(x + h) = 0.9$
 $\therefore h = -0.1$

$$f(1) = \frac{\cos(1)}{e^{2(1)}} = \frac{\cos(1)}{e^2}$$
 Note: $\cos(1) \neq 0$
$$f'(1) = -\frac{(\sin 1 - 2\cos 1)}{e^{2(1)}} = \frac{2\cos(1) - \sin(1)}{e^2}$$

$$f(0.9) \approx f(1) - 0.1f'(1)$$

$$\approx \frac{\cos(1)}{e^2} - 0.1 \left[\frac{2\cos(1) - \sin(1)}{e^2} \right]$$

$$\approx \frac{\cos(1) - 0.2\cos(1) - 0.2\sin(1)}{e^2}$$

$$\approx \frac{0.8\cos(1) - 0.2\sin(1)}{e^2}$$

Change in f is given by: $f_{\mathit{final}} - f_{\mathit{initial}} = f(0.9) - f(1)$

$$\Delta f \approx \frac{0.8\cos(1) - 0.2\sin(1)}{e^2} - \frac{\cos(1)}{e^2}$$

$$\Delta f \approx \frac{0.2\cos(1) - 0.2\sin(1)}{e^2}$$