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VCE Mathematical Methods Units 3 & 4 Trial Examination 2 Suggested Solutions

SECTION 1

Question 1 C

The turning point maximum of g has a value of 2 when x = ——%.

Thus x = —% must be within the domain.

We require the solution to g(x) =-7.
Now 2 - (2x+ 1) =7

2x+1)*=9
2x+3=43
x=-2,1

Thus if we take a domain from x =-2 to x =1 we include a range of [-7, 2].

As the turning point is part of the range, we can have a domain of [~2, M%} or [—é, 1]

Thus a=—%,b= 1
Question 2 E
Given that f(x + 2) =x" — 5x - 6, we deduce that f{x) = (x—2)" = 5(x—2) — 6.
Expanding gives f(x) = x*-9x+8.
Thus g(f(x)) = g(x2 -9x + 8)
=2log.(x" - 9x)

Question 3 C

1 3 2, _1_1. 3 4
v"zcos(Sx)~-2}+4x dx—2><551n(5x) 2loge(x) 4x

_sin(5x) _3log.(x) 4

10 2 x
_ xsin(5x) — 15xlog,(x) - 40
B 10x
Question 4 E
2
g(f(x)) =log (2(e° 7))
3 —x2

=log,(2) +log,(¢* )
=log,(2)+3-x

g’ (flx)) =-2x
g(f2)=-2(2)=-4
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Question 5 D
2, 1 ) 1 N4
J-sec (kx) — 4(ax "y dx = ktan(kl) alobe[ax +b|+¢
. . 2 4 1 4
Applying the formula here gives gsec™(2x) — Ao 5dx = 5tan(2x) - gloge]?:x -3 +¢c
Question 6 B
1
Part of the graph of f: R—R, y=|; (x B :r_r) is shown below.
B §
20
10
> X
20 -10 o 10 20

The minimum turning point can be found using a calculator or by recognising that

1+ sin(x—“g) has a

maximum value of 2 and hence f(x) will have a minimum value of 0.5. So we are looking for the alterpative

whose function is such that its range equals [0.5, so).

The correct response is B, as 1 + sin (x— 5) is never smaller than zero, so

I+ sin(x—%z) =1+ sin(x—%[)

Question 7 C

for all values of x.

N

X+

Given f'(4)=0 .. =4

o]

x=4=g'(4)=0
x+4 ‘
2
x=12=g'(12)=0
and f(x) <0 xe (4, 8)
~gl (x>0 xe (4,12)

and f/(8) =0 ~~5— =8
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Question 8 E
f(x) is clearly continuous as it can be drawn without the pen leaving the page.

f{x) is not differentiable at x=0 or x =2,

Question 9 A

i I

[ (s0(2) o] seos(3) 2]

| |
(-3(3) ~24&) - -31)-0)

2
—2.Jn

Question 10 A
Let f'(2a) =y
s flyy=2a

Now f(x) =¥ +a°), so f(y) =¥’ +a’) =2a

Cubing both expressions for f(y) gives y3 +a = (2(1)3
3 3

y =Ta

y=3%7a

Question 11 D

3x x
e +12¢ =7ex
ex
Multiplying both sides by ¢ gives
e3x +12e" = 7€2x
3x 2x X
e —Te +12¢6 =0
e (e =T +12)=0
(e =3 -4)=0
20, =30re' =4
x=log,(3) or log (4)
=log (3) or 2log (2)

Question 12 E
. 2z
All have a period of (%) =12.
All have an amplitude of 2.
All are translated up 3 units.
All have a y-intercept of 3 + A3
Alternatively, checking on graphic calculator confirms E.
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Question 13 C

The gradient of a normal with the equation 2x — 5y =10 is %

The gradient of the tangent must therefore equa —g.

So f/(~2) = —g

Question 14 E

Let us consider the domains first.

For f; we must have (x + 2)2 >0, which is satisfied by R\{-2}.

For f, we must have |x* — 4] > 0, which is satisfied by R\{+2}.

For f, we must have |x + 2| > 0, which is satisfied by R\{-2}.

So f| and f; both have the desired domain.

Close inspection shows that both also have the desired range of RTU {0,

Question 15 A
Starting with y = ¢ and reflecting in the y-axis gives y= ¢ .

A translation of 1 unit left gives y=¢ " "

X

A dilation by a factor of 3 away from the y-axis is achieved by replacing x with 3

—?_(%x-l- 1) Lgx_g , —_2)_ 1 —?ZA_
Wegety=e =e’ =e’e’ =( )e
Question 16 D

0 = 3008 (x) — 3sin(x) cos(x)

0 = cos (x)(3cos (x) — ~/3sin(x))

cos{x)=0 or tan(x)=i=.\/§
3
x=’_t01.13£ x=310ri£
2 2 3 3
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Question 17 B

The mode of X is the value of x for which the graph of y = %x2(4 —x) has a maximum value in

the domain {0, 4].

y
A
0.61
041

0.2¢

: : ' : : —» X
0 05 1 15 2 25 3 35 4

Using the calculator, the maximum turning point is at (2.66667, 0.44444),

ie x= 2% = g 1s the mode.

Alternatively, using calculus

dy_ 3 g, 3,2
Zx - 6 5x 3%

%:o,ifno-org

Hence the mode is x = g {where the maximum turning point 0ccurs).

Question 18 A

Let X be a random variable representing the true speed of cars which the speed camera registers as
travelling 65 km/h. Thus X is normally distributed with a mean of 63 and a standard deviation of 3.

We require Pr(X < 62).

263y - pr(z<-1) = 03694,
3 3
Alternatively, use normedf (-9999, 62, 63, 3)

The percentage of cars registered as travelling 65 km/h that are actually travelling less than 62 km/h
is 36.9%.

Now Pr{X«<62)= Pr(Z <

Question 19 E
var(X) = EO¢) - [E(X)]°
=234-15"
=9
Thus o =3
We require Pr(E(X) - 20 S X <E(X) +20)
=Pr(15-2x3<X<15+2x%3)
=Pr(9<X<2I)

Copyright © 2008 Neap TEVMMUMEX2_SS_08.FM 3]
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Question 20 C

Let X represent the number of cured rats from the first sample of 30. X is a binomial random variable with
probability of success p.

Pr(X=1)=085
1-Pr(X=0)=0.85
Pr(X=0)=0.15
= (1-p)°=0.15

1
1-p=0.15"
p=0.0613
Let Y represent the number of rats cured in the sample of 50. We require Pr(¥ < 2).
=Pr(Y=0)+Pr(Y=1)+Pr(¥Y=2)

= 0.939°" + 50(0.061)(0.939)* + 1225(0.061)%(0.939)"

Question 21 D

—4sin (29 -+ JZI) will have its greatest value when sin (20 + g) =-1.
(29+%) :—g,given #<0

Thus 26 = 3z
4

=%
g

Question 22 C

As flg(x)) =f(x) for x< 0
ngx)=x,forx<0

Also  flg(x))=f(-x) forx>0

~g(x)y=—x,forx>0
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SECTION 2

Question 1

1
a.  Asfis aprobability function j (—ae” +e)dx=1,
0

Thus [~ ¢* + ex], =1 Ml
(—e®+e)—(~e’+0)=1
—etre+1=1
€a=€
a=1 Al

b. As X is measured in years, we require Pr(X <0.5).

0.5
Pr(X<0.5) =I (—e +e)dx
o]

=[-e" + ex]y” Ml
= (=™ +0.5¢) = (=’ +0)

c. We require the associated probabilities which relate to the battery lasting less than 3 months, between
3 and 6 months and greater than 6 months.

Now using the given result in part b. Pr(X>0.5)=1-Pr(X<0.3)

::1—(%—.\/;+1)=Jé—§:0.2896 Al
To find the probability the battery lasts less than 3 months we require Pr(X < 0.25).
0.25
Pr(X<025)= I (—e" + e)dx = 0.3955 using calculator. Al
0
Pr(0.25<X<0.5)=1-(0.3955 + 0.2896) Al
=0.3149
P 450 15 -as0 =450 Al
Pr{(P =p) 0.3955 0.3149 0.2896
d. The mean profit per battery is E(P), where
E(P) =-450 % 0.3955 + (%s - 450) % 0.3149 + (s — 450} % 0.2896
=0.447055 — 450
For E(P) > 250, 0.44705s — 450 > 250, Al
s0 5> 1565.82
For the profit to exceed $250 we set the selling price at $1566. Al

Copyright © 2008 Neap TEVMMUIAEX2_S5_08 FM 8
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e Define the random variable X as the number of batteries lasting less than 6 months.
X is a binomial random variable with n =3 and p = 0.3955 +0.3149 = 0.7104 Ml
We require Pr(X>1)=Pr(X =2) + Pr(X =3) M1

- (zj (0.7104)2(0.2906) + @](0.7104)3

=0.797 Al
Alternatively, using calculator

I — Binedf(3, 0.7104, 1)

=0.797
Question 2
a.  H(10)=5sin(0)+20
=20
T = 2—0 =2 Al
10
T, 60485 _
: 3 3
A=99gs5 Al
JT
C. ¥y .
sine curve
30 ye [15, 25] Al

3 maxima and 2 minima (coordinates not required)
25

20

15

graph of y = 2x straight line between

10 and (10,20) Al (85, 20} and (%+ 85, 0)

Al

5
(& + 85,0
of 10 2 30 4 s0 e 70 s 90 100 °
d. H,=25m Al
. T
SSm(E(x—IO))+20—25

sin(%(x—l()))z]

i1 _ T o7 9%
;3 -10=5.75

—— or use graphics calculator.

,T Al
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x<10 m=2
Ify=55in(%(x-10))+20,
- LU
¥ _3c05(15(x 10)). M1
at x=10
y'=Z
3
Al

So the gradients are different, and therefore not smooth.
>85 m=-Z
X m 3
. (7
Ify_5sm(15 (x— 10))

T o
y —3005[15(): 10))

at x =85

y' = %ICOS(5JI) = —%ﬂ
So the gradients are equal, and therefore smooth. Al
i. For the reflection in the y-axis

3=’ (=)

16 160
_ 3% X
~ 16 " 160 Mi
For the translation of 100 units parallel to the x-axis

_3(x=100)" , (x= 100’
16 160

_ 3%~ 600z +300 , x’ = 300x" + 30 000x + 1 000 000
16 160
Al

3 2
= X _2TX | 15054375
160 16
20 50
. 35 X 7T
ii A=2 e Z—|dx+2 | 5Scos E(x—ZO) + 20 dx Al

16 16
0 20
Al

=2 % 250+ 2 x 600

= 1700 m*

10
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Question 3

a.

As x = —o0, &' — 0, and so cos(e”) ~> cos(0).

Thus f{x} — 1 which means that y =1 is a horizontal asymptote. Al
. B . . X x _J 3
b. Solving f(x) =0 for x intercepts gives cos(e”) =0, andso ¢ = > or <~ M1
7 3x
Thus x =log, 5) or log, > ) and s0
. . 7 . . 3n
point A has an x-intercept log, 5 and point B has an x-intercept log, > ) Al
c. Point C will be the first positive sclution to the equation f'(x) = 0.
Now f’'(x) =—¢"sin(e") =0, so sin{e") =0. M1
Thus the first positive solution is when ¢ = and x = log, ().
log {7)
Now f(log, (7)) = cos(e y=cos{m)=-1,
so, point C has coordinates (log,(m).—1). Al
d. g_l exists if g is a one to one function. Thus the largest value possible for & is the x coordinate of C.
Thus k =log, (7). Al
e, i. ?
(-1, log,(m)) 74 ymx
(-1, cos(e™))
“x
i
—11 (cos(e™'), =1) o e (log,(7),~1)
g_](x) reflection about y = x M1
axial intercepts Al
terminal points Al
ik, gla) = g“l(a) on three occasions as shown on the graph above. These coordinates are
(-0.767, 0.894), (1, 1) and (0.894, -0.767).
Thus if @ < 1, the required value of a is —0.77, correct to 2 decimal places. Al
Copyright @ 2008 Neap TOVIMUAICA? S 02 IM 11
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Question 4

a.

2% +6x —2x-6
=25 (x+3) - 2(x +3)
=2(x+3)x" - 1)
=2(x+3)(x - D(x+1)

Hence, a=3

Al

Alternatively, in the expansion of 2(x +a)(x + 1)(x—1), the constant term is 2(a)(1}{(-1) =-2a.

Hence, —2a = -6, giving a =3.

b. After reflection in the y-axis we have
y=2(—=x+3)(-x+ D{~x-D)=-2(x-3)x-1)(x+ 1) Al
A reflection in the x-axis now gives y=2{x—3}{x-1}(x+ 1). Al
A transiation of 2 units in the positive x direction requires x — (x — 2) so that we now have
h(x)=2[(x-2)-3][(x-2) - 1][(x-2} + 1] Al
=2(x=-5¥x-3)(x-1)
c. Points of intersection occur when
2% 4627~ 2x—6=2(x—5)(x—1)(x=3)
25"+ 6x° ~ 2x— 6 =2x° — 18x° + 46x-30 M1
24x" —48x+24=0
X —2x+1=0
This has a double root at x =1 indicating the graphs touch at x = 1.
h(1)=2x-4x-2x0=0. Al
The graphs touch at (1, 0).
d.  Comparing the factored form of both functions
h(x)=2(x-5)(x—1)(x—-3) and y = 2(x + 3)(x— 1)(x+ 1) it can be seen that changing
xtox+4 inh(x) willresultin y =2(x— 1)(x + 3)(x + 1). Thus a translation of 4 units to
the left is required. Al
e A dilation of factor 0.5 away from the x-axis means that the vertical distance g will be reduced
to 0.54. A dilation of factor 3 away from the y-axis means that the horizontal distance p will be
increased to 3p.
Thus d = J/(3p)” + (0.5¢)° M1
= fop?s+ }qu Al
Question 5
a. 2d —2dcos(2nd) + 10=10 Ml
2d-2dcos(2ad)=0
2d{1 - cos(2nd))=0
d=0 or cos(2Znd)=1
2nd=2kn k=0,1,2, ..
d=0,1,2,3,4,56,7. Al
. minimum occurs at midnight each day. Al
Gopyright ® 2008 Neap TEVMMLSEXZ_ 55,08 FM 12
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d.

Plotting v = 30 together with the graph of y = C(d) on a graphics calculator gives

intersections (5.411, 30), (5.607, 30), (6348, 30) and (6.667, 30). M1
Total time for which C > 30, is (5.607 —5.411) + (6.667 — 6.348)

=0.515 days

=0.513 x 24 hours = 12.4 hours Al
i. fxX)=uxv

Fx)y=u'v+uv’
=1s5in(2zx) +x(2mcos(27x)) Al

= sin{2xx) + 2xxcos(2nx)

ii. J‘(sin(Z:ﬂrx) + 2rxcos(2mx))dy = xsin(2mx)

2axcos(2ax)dx = xsin(2ax) — Isin(zarx)dx M1

2m xcos(20:x)dx=xsin(27rx)+ﬁcos(2m¢) M1
e = o o)

..xcos(29u)dx—- o xsin{2mx) + 2xcos(2n1) Al

Wednesday d =2 to d=3
3

(2d-2cos(2md) + 10 dd

%

» . 1 3
= - —_— 2 —
_d Q(QE(dsm(er)) + 2ncos(2nd)) + 10d} Ml

2

_ :(32 _ 2(2]7{(3 sin (671)) + ﬁcos(én)) " 10(3)) - (2’*’ - 2(513—1(25111(4;1:)) + ﬁcos(ém:)) + 10(2))}

(9“2(%51?:) +30)-(4-2(0+%Ij +20)

=15 cars/hour M1

. number of cars =15 x 24 =360 cars. Al

Copyright © 2008 Neap TEVHIMUBAERE BS QU FT4 13





