

## **Trial Examination 2006**

# **VCE Mathematical Methods Units 3 & 4**

## Written Examination 1

## **Question and Answer Booklet**

Reading time: 15 minutes
Writing time: 1 hour

| Student's Name: _ | <br> |  |
|-------------------|------|--|
|                   |      |  |
| Teacher's Name: _ |      |  |

#### **Structure of Booklet**

| Number of questions | Number of questions to be answered | Number of marks |
|---------------------|------------------------------------|-----------------|
| 10                  | 10                                 | 40              |

Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.

Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper and/or white out liquid/tape, a calculator.

## Materials supplied

Question and answer booklet of 9 pages, with a detachable sheet of miscellaneous formulas in the centrefold.

Working space is provided throughout the booklet.

#### **Instructions**

Write **your name** and your **teacher's name** in the space provided above on this page.

All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other electronic communication devices into the examination room.

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2006 VCE Mathematical Methods Units 3 & 4 Written Examination 1.

#### **Instructions**

Answer **all** questions in the spaces provided.

A decimal approximation will not be accepted if an **exact** answer is required to a question.

In questions where more than one mark is available, appropriate working must be shown.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

## **Question 1**

A random variable *X* has the following probability distribution.

| X         | 0          | 1          | 2          | 3 |
|-----------|------------|------------|------------|---|
| Pr(X = x) | 3 <i>a</i> | 4 <i>a</i> | 2 <i>a</i> | а |

|                        |      | <br> |
|------------------------|------|------|
| Find $Pr(X \le 2)$ .   |      |      |
|                        | <br> | <br> |
| Evaluate $E(2X + 1)$ . |      |      |
|                        | <br> | <br> |
|                        |      |      |
|                        |      | <br> |
|                        |      |      |
|                        |      |      |
|                        |      |      |
|                        |      |      |

1 + 1 + 2 = 4 marks

| <b>Ouestion</b>  | 2 |
|------------------|---|
| <b>CAUCSHOIL</b> | _ |

| <br> | <br> | <br> |
|------|------|------|
| <br> | <br> | <br> |
|      |      |      |

2 + 1 = 3 marks

## **Question 3**

b.

The graph of  $f(x) = x^2$  is transformed to the graph of  $g(x) = 2x^2 + 4x - 7$ .

**a.** Write g(x) in the form  $2(x+a)^2 + b$ , where a and b are integers.

Describe the transformations which map f(x) to g(x).

2 + 2 = 4 marks

| Que  | estion 4                                                                     |         |
|------|------------------------------------------------------------------------------|---------|
| Finc | If the exact solutions of $cos(3\pi x) = -sin(3\pi x)$ for $0 \le x \le 1$ . |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              | 3 marks |
| O    | oation 5                                                                     |         |
|      | estion 5 arve has equation $y = x^2 e^{-3x}$ .                               |         |
| a.   | Find $\frac{dy}{dx}$ .                                                       |         |
| •••  | $\frac{dx}{dx}$                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
| b.   | Write down the <b>exact</b> coordinates of all stationary points.            |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |
|      |                                                                              |         |

2 + 2 = 4 marks

## **Question 6**

Let  $f: R \to R$ ,  $f(x) = -(x+2)(x-1)^2$ . Part of the graph of y = f(x) is shown below.



**a.** On the same axes, sketch the graph of y = g(x) where g(x) = |f(x)|, clearly labelling any axis intercepts.

**b.** Write down the domain of g'.

| Find the area encl | losed by the curve with | equation $y = g(x)$ | and the $x$ -axis. |  |
|--------------------|-------------------------|---------------------|--------------------|--|
|                    |                         |                     |                    |  |
|                    |                         |                     |                    |  |
|                    |                         |                     |                    |  |
|                    |                         |                     |                    |  |
|                    |                         |                     |                    |  |
|                    |                         |                     |                    |  |
|                    |                         |                     |                    |  |
|                    |                         |                     |                    |  |
|                    |                         |                     |                    |  |
|                    |                         |                     |                    |  |
|                    |                         |                     |                    |  |
|                    |                         |                     |                    |  |
|                    |                         |                     |                    |  |

1 + 1 + 3 = 5 marks

| $\sim$ | 4 •      |   |
|--------|----------|---|
|        | uestion  |   |
| ι,     | uesiioii | • |
|        |          |   |

The function f is defined as

$$f(x) = \begin{cases} k(x+1), & 0 \le x \le 2\\ 0, & x < 0 \text{ or } x > 2 \end{cases}$$

|                |                      |              |              |           | <br> |  |
|----------------|----------------------|--------------|--------------|-----------|------|--|
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |
| Find the m     | edian of $X$ , given | zing vour ar | nswer in exa | act form  |      |  |
| i ilia tile il | culaii oi zi, gi     | ing your ar  | iswer in ex  | act form. |      |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           | <br> |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |
|                |                      |              |              |           |      |  |

2 + 3 = 5 marks



## **Trial Examination 2006**

# **VCE Mathematical Methods Units 3 & 4**

# Written Examination 1

## **Formula Sheet**

## **Directions to students**

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

#### **MATHEMATICAL METHODS FORMULAS**

#### Mensuration

area of a trapezium:  $\frac{1}{2}(a+b)h$  volume of a pyramid:  $\frac{1}{3}Ah$ 

curved surface area of a cylinder:  $2\pi rh$  volume of a sphere:  $\frac{4}{3}\pi r^3$ 

volume of a cylinder:  $\pi r^2 h$  area of a triangle:  $\frac{1}{2}bc\sin(A)$ 

volume of a cone:  $\frac{1}{3}\pi r^2 h$ 

#### **Calculus**

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\int x^n dx = \frac{1}{n+1}x^{n+1} + c, n \neq -1$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\int e^{ax} dx = \frac{1}{a}e^{ax} + c$$

$$\int \frac{1}{x} dx = \log_e|x| + c$$

$$\int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c$$

$$\int \cos(ax) dx = \frac{1}{a}\sin(ax) + c$$

 $\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a\sec^2(ax)$ 

product rule:  $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$  quotient rule:  $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ 

chain rule:  $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$  approximation:  $f(x+h) \approx f(x) + hf'(x)$ 

### **Probability**

$$Pr(A) = 1 - Pr(A')$$
  $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$ 

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

mean:  $\mu = E(X)$  variance:  $Var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$ 

| probab     | ility distribution                        | mean                                        | variance                                                   |
|------------|-------------------------------------------|---------------------------------------------|------------------------------------------------------------|
| discrete   | $\Pr(X=x) = p(x)$                         | $\mu = \Sigma x p(x)$                       | $\sigma^2 = \Sigma (x - \sigma)^2 p(x)$                    |
| continuous | $\Pr(a < X < b) = \int_{a}^{b} f(x) \ dx$ | $\mu = \int_{-\infty}^{\infty} x f(x) \ dx$ | $\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \ dx$ |

## **END OF FORMULA SHEET**

| Question o | 0 | uestion | 8 |
|------------|---|---------|---|
|------------|---|---------|---|

$$f(x) = 3\sin(2x), \ 0 \le x \le \pi$$
  
 $g(x) = 1 - x^2, \ x \in R$ 

|   | Show that the composite function with rule $g(f(x))$ exists.                       |
|---|------------------------------------------------------------------------------------|
| - |                                                                                    |
|   |                                                                                    |
| _ |                                                                                    |
| _ |                                                                                    |
|   |                                                                                    |
| V | Write down the rule for $g(f(x))$ and state the domain of this composite function. |
| - |                                                                                    |
| - |                                                                                    |
| - |                                                                                    |
| - |                                                                                    |
| - |                                                                                    |
| - |                                                                                    |
| - |                                                                                    |
| V | What is the range of this composite function?                                      |
| - |                                                                                    |
| - |                                                                                    |
| - |                                                                                    |
|   |                                                                                    |
| _ |                                                                                    |
|   |                                                                                    |
| - |                                                                                    |
| - |                                                                                    |
| - |                                                                                    |

| U    | ' | ation to the va |      |
|------|---|-----------------|------|
| <br> |   | <br>            | <br> |
| <br> |   | <br>            | <br> |
|      |   | <br>            | <br> |
|      |   |                 |      |
|      |   |                 |      |
|      |   |                 |      |
| <br> |   | <br>            | <br> |
| <br> |   | <br>            | <br> |
|      |   |                 |      |
| <br> |   | <br>            | <br> |
|      |   |                 |      |
| <br> |   | <br>            | <br> |
| <br> |   | <br>            | <br> |
|      |   |                 |      |
|      |   |                 |      |
|      |   |                 |      |
| <br> |   | <br>            |      |
| <br> |   | <br>            | <br> |
| <br> |   | <br>            | <br> |
|      |   |                 |      |

8 TEVMMU34EX1\_QA\_06.FM Copyright © 2006 Neap

| nestion 10                                                                                                                         |       |
|------------------------------------------------------------------------------------------------------------------------------------|-------|
| nsider the curve with equation $y = 4x^3 + 1$ . Find the equation of the tangent which touches this curve sees through the origin. | e and |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    |       |
|                                                                                                                                    | 1     |
| 41                                                                                                                                 | marks |

END OF QUESTION AND ANSWER BOOKLET