

LARTV NO. 26

STUDENT:	TEACHER:

YEAR 12 - OCTOBER 2006

MATHEMATICAL METHODS

Written test 1

Reading time: 15 minutes
Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
11	11	40

- Students are permitted to bring into the test room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the test room: blank sheets of paper and/or white out liquid/tape.
- No calculator is allowed in this test.

Materials supplied

- Question and answer book of 8 pages, with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your name in the space provided above.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or other electronic communication devices into the test room.

ı	nstri	1	ct.	i	n	n	9

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an exact answer is required to a question.

In questions where more than one mark is available, appropriate working must be shown.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1 (3 marks)

Given the functions

$$f: \mathbf{R} \setminus \{0\} \to \mathbf{R}, \ f(x) = \frac{1}{x}$$
 and

$$g: [2, +\infty) \rightarrow \mathbf{R}, \ g(x) = \sqrt{3x-4}$$

a. Find the largest domain for which g	(f(x))	is defined
--	--------	------------

		1 mark
b.	Write down the rule of the composite function $g(f(x))$	

	1 mark

c. Find the derivative of g(f(x))

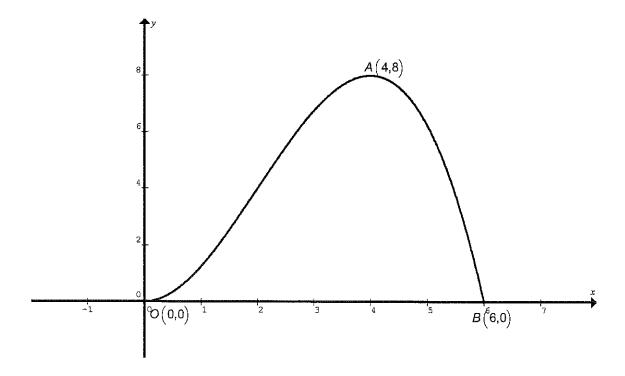
1 mark

Question 2 (4 marks)

Solve the equations

a.
$$\ln \sqrt{x+2} - \ln x = 0$$

2 marks


b. $\left| \sin \left(x - \frac{\pi}{6} \right) \right| = \frac{\sqrt{3}}{2}$ for $x \in [0, 2\pi]$, giving exact answers.

;

2 marks

Question 3 (3 marks)

The graph of the function y = f(x), which passes through the points O (0,0), A (4,8) and B (6,0) is shown

Sketch, on the same set of axes, the graph of y = f(2(x+1)) with the images of O, A, B clearly shown and their coordinates labelled.

3 marks

If $f: \mathbf{R} \setminus \{2\} \to \mathbf{R}$ is such that $f(x) = \frac{1}{x-2}$, find the equations of the tangents to $y = f(x)$ which have a
gradient of -4 .
4 marks
Question 5 (4 marks)
Considering that the difference between $\left(\frac{\pi}{3}\right)^c$ and 1^c is small, use linear approximation to find $\sin 1^c$, giving
your answer in exact form.
4 marks

MATHEMATICAL METHODS AND MATHEMATICAL METHODS (CAS)

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

REPRODUCED WITH PERMISSION

Mathematical Methods and Mathematical Methods CAS **Formulas**

Mensuration

area of a trapezium:

 $\frac{1}{2}(a+b)h$ volume of a pyramid: $\frac{1}{3}Ah$ $2\pi rh$ volume of a sphere: $\frac{4}{3}\pi r^3$

curved surface area of a cylinder:

volume of a cylinder:

 $\pi r^2 h$

area of a triangle: $\frac{1}{2}bc\sin A$

volume of a cone:

 $\frac{1}{3}\pi r^2 h$

Calculus

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\frac{d}{dx} (\log_e(x)) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$$

$$\frac{d}{dx}(\cos(\alpha x)) = -a \sin(\alpha x)$$

$$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a \sec^2(ax)$$

 $\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

$$\int \frac{1}{x} dx = \log_e |x| + c$$

$$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$$

$$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$$

product rule: $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$

quotient rule: $\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

chain rule: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$

approximation: $f(x+h) \approx f(x) + hf'(x)$

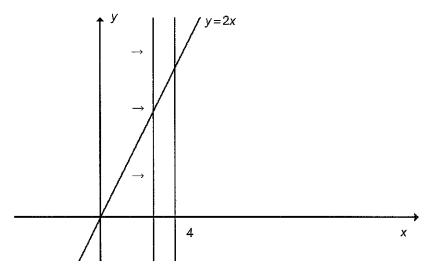
Probability

$$Pr(A) = 1 - Pr(A')$$

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

$$\mu = E(X)$$


variance:
$$var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$$

probability distribution		mean	variance		
discrete $Pr(X=x) = p(x)$		$\mu = \sum x \ p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$		
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x \ f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$		

REPRODUCED WITH PERMISSION

Question 6 (4 marks)

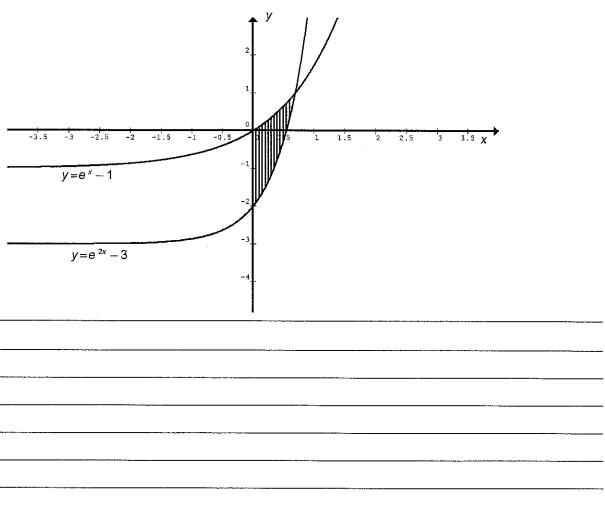
A right angled triangle is defined by the line y=2x, the positive side of the x – axis and a vertical line from y=2x to the x – axis.

If the vertical line is moving to the right from the origin at a constant rate of 2 units/min, find the rate of increase of the area of the right angled triangle when x=4 units.

	 · · · · · · · · · · · · · · · · · · ·

4 marks

Question 7 (4 marks)


a. Find $\frac{dy}{dx}$ if $y=2\log_{\theta}\frac{1}{|2x-5|}$, $x\neq \frac{5}{2}$.

b.	lf	$f: \mathbf{R} \rightarrow \mathbf{R}$	is such that	$f'(x) = \sin x$	2x-	$-\frac{\pi}{3}$	and $f(0) = \frac{1}{2}$, find the rule of	f(x).
----	----	--	--------------	------------------	-----	------------------	---	-------

2 marks

Question 8 (4 marks)

Find the exact area bounded by the curves $y=e^{2x}-3$, $y=e^x-1$ and the line x=0.

A random variable $X = \{1, 2, 3, 4\}$ has a probability distribution function $f(x) = kx$	
a. Find the value of k.	
	-
;	
	4
h Eind the value of E(V)	1 mark
b. Find the value of $E(X)$.	
	1 mark
c. Find the value of $E(2X+3)$.	
	1 mark
Question 10 (3 marks)	
If X is a binomial random variable with parameters n and p .	
a. Find $Pr(X=1)$	
	1 mark
b. Show that $Pr(X=1 X \le 1) = \frac{np}{q+np}$	
A	
	
	2 marks
	Z marks

Question 11 (4 marks)

The continuous random variable X with a probability density function is given by

$$f(x) = \begin{cases} \frac{4}{9}\sqrt{x} & \text{if } 0 \le x \le a \\ 0 & \text{if } x < 0 \text{ or } x > a \end{cases}$$

a.	Find the value of a.	÷	
			9 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

		94 A	
b.	Find be much that Dr. (Va.b.) 2.Dr. (Va.b.)		1 mark
D.	Find b such that $Pr(X < b) = 2Pr(X > b)$.		
······································			
		M8111-1	, <u>, , , , , , , , , , , , , , , , , , </u>
o			
		110	

3 marks

TOTAL: 40 marks

END OF QUESTION AND ANSWER BOOK