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VCE Mathematical Methods Units 3 & 4 Trial Examination 1 Suggested Solutions

PART |

Question 1

This graph has the basic shape of a y = —sinx graph. % of its period is 3%‘, so its period is 7.
Period = %:3 = n = 2. The amplitude is a and it has been translated down by & units. The equation is

therefore y = —asin2x—a.

Answer E

Question 2

The term containing x2 is 6C2(3.r)2(-2)4 =15(3)2(-2)%x2 = 2160x2.

Answer C

Question 3
The graph of fx) is shown below.

A /-(2, log,2)

0 (L,®)

The range of fis (-, 1], as logy2=1.

Answer D
Question 4
log,x — 3log,2x + 2log,3x =log.x - log,(2x)3 + log,(3x)?
2
=1Jog X (3x)
ge (21)3
9
= logeg
=log,9 - log, 8
Answer B
Question 5

log,x(x-1)=1

sx2ox=2

x-x-2=0

(x-2)x+1)=0
' x=2or-1.

Answer E
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Question 6
The graph shown is a negative quartic with x-intercepts a and b. Therefore linear factors of x—a and x-b

exist. We notice a turning point on the x-axis when x = 0 hence x? is a factor in the equation.

We look for y = —x2(x — a}(x — b}, which can also be expressed as y =x%(a—x)(x - b).

Answer D

Question 7

Use of the graphic calculator is required. Entering Y1=2sin (3x) and Y2=1og (3x), we observe 3
intersections. Hence there are 3 solutions.

Answer C

Question 8

The graph required has y = f{x) translated b units to the right and dilated by a factor a away from the x-axis
in the y direction.
Answer B

Question 9

The easiest way to generate the resultant graph is to add —g(x) to fx) . This results in a y-intercept of (0, 1),
and y — —eo as x — —oo and as x — oo

Answer D

Question 10
We look for a reflection in the line y = x and all inverse coordinates will have x and y values interchanged.

Answer A

Question 11

The vertical asymptote x = a results from equating the denominator to zero. This is a negative rectangular

hyperbola, hence the denominator is g —x . The horizontal asymptote is obtained when b is added to -

a-x
The y-intercept (when x = 0) confirms that D is correct.

Answer D

Question 12
flx) = e+ 1. By the chain rule, f(x) = e¥+1(2x) = 2xex+1,

Answer A

Question 13
fix) is a positive cubic, hence f(x) is a positive quadratic. The stationary points of f{x) are the x-intercepts
of f'(x) . The turning points of f “(x) correspond to the maximum negative gradient of f{x).

‘Answer C
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Question 14
fix)= loge(—_]——) = log,((sinx)~1} = -log,(sinx) .
sinx
Using the chain rule, f(x)=— €05 - _tanx.
sinx
Answer A
Question 15

dy _ e*mcosmx — (sin®kx)e* _ e*(McosTx — sinfx)
2x - 2% ’

Using the quotient rule,
€

e%(mcos0 —sin0) _
=T.
20

dy
Atx=0,==
=D o

Alternatively, the product rule could be used with y = e™*( sin7x) :

ngx = e~*(Tcostx) + (sinTx)(—e™*) = e*(McosTx — sinf{x).

Atx=0, %zeo(ncos()—sinO)=n.

Answer C

_Question 16
Using the product rule, dy - e l) + (loge2x)ex = e’(l + logEZx) .

dx X X

Answer A

Question 17

Y
Atx=0,y=e 2% _1=0.
. .- ‘_iX _ 1 —g _ 1
The gradient of the tangent, mr1s given by o —Ee Atx=0, myp= 3
mpmy=—1, s0 atx=0, mNz':—i-=2,
2

Hence the equation of the normat at (0, 0) is y - 0=2(x - 0)
y = 2x.

Answer C
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Question 18
Using the left rectangle approximation for Y,
y=x2+1

When x=1,y=2.
Whenx=2,y=3.
When x=3, y=10.
When x=4,y=17.

HV

Approximate area=2+5+ 10+ 17
= 34 square units.

Answer B

Question 19

S SR | -2
I2(5x+2)2d‘x 2_[(5“2) dx

1( 1
"—10(5x+2)+c

e e 1 1
An antid —— .
antiderivative 15 10(5x " 2)

Answer E

Question 20

ol

Area= | —-x?—-(-x-2)dx

J 1

-

=] -x?+x+2dx
v

=[-les L, 2x:]2

L 3 2

-1

(-§+2+4)-(£+1-2)
3 3 2

9

= Esquare units.

Answer B
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Question 21

2 OR
1
+ = 2a=0
0 2cosa .
cos2a=10
2a=E§-1-t a=174t'
227
Tt 3}
a=—,—,
4 4

Answer A

Question 22

EA)=np=2 and Var(A)=%=np(l -p).

3
Lz =2(1-
5 (1-p)
3
A(l-p)==
(I-p)=73
’P=l
. 4
_2
ASE(A)=’1P=2vn"T=8'
4
o . n g~ (1(3)°
For a binomial random variable, Pr(4 =2)="C,p?(1 —p)*~2= CZ(Z) (Z) '
Answer D
Question 23

This is a hypergeometric experiment. Let X be the number who favour all-year protection.

B 10

Then Pr(X=3)= = =%.

@ "

Answer C
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Question 24

Z has a standard normal distribution.

We require area A.

A=Pr(Z<0.5)-Pr(Z<-0.3) —1//
=Pr(Z<05)-Pr(Z>0.3)
=Pr(Z<05)-(1-Pr(Z2<0.3)) -3 -2 -1

=Pr(Z<0.5)-1+Pr(Z<0.3)
=Pr(Z<0.5)-1+Pr(Z>-03).

Answer B
Question 25
Let X be the number of insects zapped in the tray.
X 0 1 2 3 4 5 6
1 2 1 4 A 4 1
Pr(X =x) 20 20 20 20 20 20 20

The mean number of insects zapped is given by
2 02,12 28 20 7
EX0=0+35%36720"20 " 20" 20 %77

Answer C

Question 26

This is a hypergeometric experiment with n =10, N = 60 and D=35.
Let X be the number of yellow tees selected. Then E(X) = n% = g x 10=583 .
nD(N=D)(N=n) _(10x35)(25)(50) _ 5 ¢

NA(N-1) 3600(59) o

and Var(X) =

Answer D

Question 27

X is hypergeometric, Y is binomial. By experiment it can be found that E(X) = E(Y) and SD(X) < SD(Y)
when 7 is small. The graph in A is the only representation of this situation.

Answer A
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PART Il
Question 1
a. The smallest x value is obtained by letting 2x— 1 =0, i.e. when x= % .
There is no upper limit on the value of x. Hence the maximal domain is G_, oe) . [A]

(Note that x = % is not included in the domain as log.0 is indeterminate.)

b. For the inverse function, swap x and y,

ie. x=log.(2y~1) M]
ex=2y-1
_ert 1
2
. _er+1
A== (Al
c. The domain of f~ l(x) is the range of f{x) and the range of l(x) is the domain of fix}.
So, the range of [ ") = e, oo) . [A]
Question 2
J3+ 2sin’-2‘ =0
2sinZ =-.f3
sin 3
sin% = —[23. {A)
xX_ T T
R L R
2 3 3
_om 4n
X = 3 1 3 M [A][A]
Question 3

a. y=x%log.3x. -
Using the product rule, - M]

gXx - xze) + (log.3x)2x

=x + 2xlog.3x. [A]
. . d 1 dy_1 1 |
t of the t tis 2 Whenx=-, =2 1
b.  The gradient of the tangent 1s en x =3 3 +2x 3><logel
= %, as log.1 =0. [A]
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c. The partial equation of the tangent is given by y = %x +c.

1

Substitute in (-%, 0) : 0= 5 +c [M]
R |
L=
9
Hence the equation of the tangent is y = %x - é . [A]
Question 4
An approximation for 8y is :—?x xdx=e*xh. (M]
When x = log.2, 8y = €82 x h
=2h. [A]
Question 5
a. Let X be the number of Australians in favour of the Government’s decision.
SE(X)=np
=1769 x 0.54
=955.26
~E(X") = 1769 — 955.26
=813.74.
So we expect 813 (or 814) people to be non-supporters of the Government decision. ial
(Alternatively, E(X") = 1769 % (1 - 0.54)=813.74.)
b.  X-~Bi(n=5,p=054) and Pr(X=2)=1-[Pr(X=0)+ Pr(X=1)]. M]
Pr(X = 0) = "C,(0.54)%(0.46)°
= (0.46)°
= 0.0206.
Pr(X = 1) = °C,(0.54)1(0.46)*
=0.1209.
Hence Pr(X 22)=1-[0.0206 + 0.1209]
=0.8585
= 86%, to the nearest percentage point. [A]
(or 1 — binomedf(5, 0.54, 1)=1-0.1415=0.8585)
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Question 6
a.  X~N(67,07).
Pr(X<50)=0.1
Pr(Z < 50; 67) =0.1 [M]
Pr(Z < -ﬂ) =0.1
(o]

.1—Pr(Z<-13 =0.1
[s)

Pr(Z < 1—7) =09
[+3

17 = 128155 [A]
o
Hence 0=13.27. [A]
b. Let X be the number of prize disks in a box.
Pr(X=0)= ((6))(0.13 ¥%(0.87)6
= 0.43363
Pr(X=1)= (f)(0.13)1(0.87)5
= 0.38877
Pr(X=2)= (;)(0.13)2(0.87)4
=0.14523 [A]
~Pr(X<3|x21)=P1=X<2) . (M)
Pr(X=1)
— 0.38877 + 0.14523
1-0.43363 [A]
=0.9428
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