# 1999 Mathematical Methods CAT 3

# Suggested Solutions

Question 1

 $L \approx \frac{A}{x} + B$ 

x m is distance of grass from roadside. L in mg/kg is lead concentration

(a) As 
$$x \to \infty$$
,  $L \to 2 \text{mg/kg}$  :  $B = 2$ 

So 
$$L = \frac{A}{x} + 2$$

(b) Substitute x = 10m, L = 50 mg/kg

$$50 = \frac{A}{10} + 2$$
$$48 = \frac{A}{10}$$

$$A = 480$$
 So  $L = \frac{480}{x} + 2$ 

(c) Substitute L = 10 mg/kg

$$10 = \frac{480}{x} + 2$$

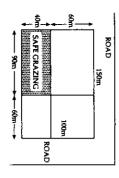
$$8 = \frac{480}{x}$$

$$x = \frac{480}{8}$$

$$= 60 \text{ m}$$

is 60 m Least distance from roadside to meet requirement

3



Safe grazing area 
$$\approx \frac{40 \times 90}{150 \times 100} \times \frac{100}{1} \%$$

T mg/m<sup>2</sup> is overall concentration of lead in grass  $T = L \times G$ 



 $G = e^{0.01x}$ 

x is distance of grass from roadside

 $G \text{ kg/m}^2$  is the density of grass

(e)  $T = \left(\frac{480}{x} + 2\right)e^{0.001x}$ (g)  $T = \left(\frac{480}{x} + 2\right) e^{0.01x}$  of form T = uv $\frac{du}{dx} = -\frac{480}{x^2}$  $x = 50 \text{ m}, \quad T = \left(\frac{480}{x} + 2\right) e^{0.001x}$ and  $v = e^{0.01x}$ Using the product rule, where  $u = \frac{480}{x} + 2$  $\frac{dT}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$  $\frac{dv}{dx} = 0.01e^{0.01x}$  $T = 19.1 \,\mathrm{mg/m^2}$ T = 19.125167T = 11.6

$$\begin{aligned} \frac{dT}{dx} &= u \frac{dv}{dx} + v \frac{du}{dx} \\ &= \left(\frac{480}{x} + 2\right) 0.01 e^{0.01x} + e^{0.01x} \left(-\frac{480}{x^2}\right) \\ &= e^{0.01x} \left[\left(\frac{4.8}{x} + \frac{1}{50}\right) - \frac{480}{x^2}\right] \\ &= \frac{e^{0.01x}}{50x^2} \left(240x + x^2 - 24000\right) \end{aligned}$$

$$\frac{dT}{dx} = \frac{e^{0.01x}}{50x^2} \left( 240x + x^2 - 24000 \right)$$
If  $x = 50m$ ,  $\frac{dT}{dx} = \frac{e^{0.5}}{125000} (2500 + 12000 - 24000)$ 

$$= \frac{e^{0.5}}{125000} (-9500)$$

$$= -\frac{19e^{0.5}}{250}$$

$$= -0.1253028 \frac{mg}{m^2} + m$$

$$\approx -0.125 \frac{mg}{m^3}$$

Note carefully the unit of  $\frac{dT}{dx}$ 

### 1999 Mathematical Methods CATs 2 and 3 Solutions

(a) Domain x+1>0 $f:D\to R$  where  $f(x)=2-\log_e(x+1)$ 

(b)  $y = \log_e x$ 

Now reflect the graph of  $y = \log_e(x+1)$  in  $y = \log_e x \rightarrow y = \log_e (x+1)$ 

Now translate the graph of  $y = -\log_e(x+1)$ 2 units upwards parallel to the Y-axis to

 $y = \log_{e}(x+1)$  $f(x) = y = 2 - \log_e(x+1)$ y = log\_x  $y = -\log_{e}(x+1)$ 

by the examiners. They illustrate the transformation Note that the sketch graphs above were not required

(c) 
$$f(x) = 2 - \log_e(x+1)$$
  
Y-intercept  $f(0) = 2 - \log_e 1$   
= 2

∴ (0, 2)

X-intercept Put  $2 - \log_e(x+1) = 0$  $\therefore (e^2-1,0)$  $\log_e(x+1)=2$  $f(x) = 2 - \log_e 1$  $x+1=e^2$  $\therefore x = e^2 - 1$ 

See above sketch

D) 
$$\rightarrow R$$
 where  $f(x) = 2 - \log_e(x+1)$   
Domain  $x+1>0$   
 $x>-1$   
Domain =  $\{x: x>-1\}$  or  $\{-1,\infty\}$ 

(d)  $f(x) = 2 - \log_e(x+1)$ 

Of form  $f(x) = 2 - \log_e u$ 

where u = x + 1

 $\frac{du}{dx} = 1$ 

 $f'(x) = \frac{du}{du} \times \frac{du}{dx}$ 

# - 1 # × 1

(1) Translate above graph 1 unit to left parallel to the X-axis. Thus

Now reflect the graph of 
$$y = \log_e(x+1)$$
 in the X-axis to obtain  $y = -\log_e(x+1)$ 

obtain the graph of  $f(x) = 2 - \log_e(x + 1)$ 

(e) (i)  $f(x) = 2 - \log_e(x+1)$ 

To find the inverse function interchange x and y

 $y = 2 - \log_e(x+1)$ 

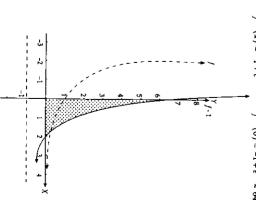
(This is reasonable from previous sketch graph)

Gradient of graph when x = 4 is  $f'(4) = -\frac{1}{4+1}$ 

 $\log_e(y+1) = 2 - x$  $OR y = -1 + \frac{e^2}{e^x}$  $y+1=e^{2-x}$  $x-2=-\log_e(y+1)$  $y = -1 + e^{2-x}$  $x = 2 - \log_e(y+1)$ 

(ii) Domain of  $f^{-1}(x)$  is unrestricted  $\therefore R$ Rule for inverse function is  $y = -1 + e^{2-x}$ 

(f) Sketch of  $f^{-1}: R \to R$  where  $f^{-1}(x) = -1 + e^{2-x}$  $f^{-1}(0) = -1 + e^2 = 64$ 



© The Mathematical Association of Victoria 2000

Page 8

# 1999 Mathematical Methods CATs 2 and 3 Solutions

(g) Area of region bounded by the graph of f(x) and  $=\int_0^{e^2-1} (-1+e^{2-x})d$ 

$$\frac{2}{P6} = \text{Area} = \begin{cases} \left(-1 + e^{2-x}\right) dx \\ 0 \end{cases}$$

$$= \int_{0}^{2} \left(-1 + e^{2}e^{-x}\right) dx \\
= \left[-x + e^{2}\left(-e^{-x}\right)\right]^{2}$$

$$= \left(-2 - e^{2}\left(e^{-2}\right)\right) - \left(-e^{2}\right)$$

$$= -2 - 1 + e^{2} = e^{2} - 3 \quad \text{sq. units}$$

(a) Let X be the amount of storage space on computer. Then  $X \sim N(\mu, \sigma^2)$   $\mu = 1.2$  megabytes  $\sigma = 0.3$  megabytes

Pr(X < 1.44) = Pr(z < 0.8) $z = \frac{1.44 - 1.2}{0.3} \approx 0.8$ 

We seek Pr(X < 1.44)</li>

= 0.7881 from tables ≈ 0.788 to 3 dec. places

(ii) Pr(Z < z) = 0.85 $1.036 = \frac{x - 1.2}{0.3}$ x = 1.5108z = 1.036

So minimum amount of storage spaces required on disc is 1.51 megabyte (correct to 2 dec. places).

Ξ one computer requires

Pr more than 1.44 megabytes = 1 - 0.7881 of storage space

of storage space need more than 1.44 megabytes = 0.2119<sup>5</sup> all 5 computers = 0.0004 to 4 dec = 0.000427 22 places

> 3 Let Y be the number of computers affected by bug  $Y \sim Bi(n, p)$ p = 0.2 = probability that computer is affected by  $Pr(Y = 4) = {}^{5}C_{4}0.2^{4}0.8$  $Y \sim Bi(5, 0.2)$ amongst 5 computers in Company Q  $\approx 5 \times 0.2^4 \times 0.8$ = 0.0064

Number of computers encountering bug = Y Nett loss made -5 x 20 1 x 120 140 3 x 120 4 x 120 5 x 120 by notiveare -(5 x 20) -(5 x 20) -(5 x 20) -(5 x 20) **--100** 20 260 380 500

(ii) Pr than \$400 given that at least 4 of company Q's computers are affected by bug.  $= \Pr(y = 5 | y \ge 4)$ 

Now  $Pr(B|A) = \frac{Pr(A \cap B)}{Pr(A)}$  Always true.

 $\Pr(Y=5|Y\geq 4) = \left(\frac{\Pr(Y=5 \text{ AND } Y\geq 4)}{\Pr(Y\geq 4)}\right)$  $= \left(\frac{\Pr(Y=5)}{\Pr(Y \ge 4)}\right) = \left(\frac{0.2^5}{0.0064 + 0.2^5}\right)$ 

= 0.0476 correct to 4 dec. places

(d) p = probability of failure in population = 0.2n = sample size

 $\sqrt{\frac{p(1-p)}{n}} = 0.05$  $\boxed{0.2 \times 0.8} = 0.05$  $\sqrt{\frac{0.16}{n}} = 0.025$  $\frac{0.16}{2} = 0.025^2$  $\frac{0.16}{n} = 0.000625$  $n = \frac{0.16}{0.000625}$ n = 256

So a sample size of 256 would be required to estimate the value of p to an accuracy of  $\pm$  0.05 with 95%

Period =  $\frac{2\pi}{2\pi}$  $=2\pi+\frac{\pi}{10}$ 

= 20 ∴ W = 20m

(b) Vertical distance from surface to top of gold seam  $= \sin\left(\frac{nx}{10}\right) - \left(\cos\left(\frac{nx}{10}\right) - 3\right)$  $= 3 + \sin\left(\frac{\pi x}{10}\right) - \cos\left(\frac{\pi x}{10}\right)$ 

(c) Let d(x) be vertical distance

 $d'(x) = \frac{\pi}{10}\cos\frac{\pi x}{10} + \frac{\pi}{10}\sin\frac{\pi x}{10}$  $d(x) = 3 + \sin\left(\frac{\pi x}{10}\right) - \cos\left(\frac{\pi x}{10}\right)$ 

If d(x) is a minimum, d'(x) = 0

So  $\frac{\pi}{10}\cos\left(\frac{\pi x}{10}\right) + \frac{\pi}{10}\sin\left(\frac{\pi x}{10}\right) = 0$  $\cos\left(\frac{nx}{10}\right) + \sin\left(\frac{nx}{10}\right) = 0$  $\sin\left(\frac{\pi x}{10}\right) = -\cos\left(\frac{\pi x}{10}\right)$ 

 $\frac{\sin\left(\frac{\pi x}{10}\right)}{\cos\left(\frac{\pi x}{10}\right)} = -1 \text{ provided } \cos\frac{\pi x}{10} \neq 0$  $\frac{\pi x}{10} = \pi - \frac{\pi}{4}, 2\pi - \frac{\pi}{4}$   $\frac{\pi x}{10} = \frac{3\pi}{4}, \frac{7\pi}{4}$  $x = \frac{30}{4}, \frac{70}{4}$ 

> ≈ 4-1.43108 =2.5689 m<sup>2</sup>

From the diagram given in question d(x) will be a

x = 7.5, 17.5

 $d(17.5) = 3 + \sin\left(\frac{17.5\pi}{10}\right) - \cos\left(\frac{17.5\pi}{10}\right)$ .: minimum vertical distance is

<u>a</u>

(a) The equation  $y = \sin\left(\frac{rx}{10}\right)$ ,  $0 \le x \le W$  represents

Now ABCDE is one complete cycle. So in

 $0 \le x \le W$  we see one complete cycle is shown

the rock surface ABCDE

Question 4

1999 Mathematical Methods CATs 2 and 3 Solutions

area of granite he =  $\int_{0}^{20} \left( \sin\left(\frac{\pi x}{10}\right) - \left(\cos\left(\frac{\pi x}{10}\right) - 3\right) \right) dx$ will remove  $= \int_{0}^{\pi} \left( 3 + \sin \left( \frac{nx}{10} \right) - \cos \left( \frac{nx}{10} \right) \right) dx$ 

 $= \left[3x - \frac{10}{\pi} \cos \frac{\pi x}{10} - \frac{10}{\pi} \sin \frac{\pi x}{10}\right]_0^{20}$ 

 $= \left(3 \times 20 - \frac{10}{\pi} \cos 2\pi - \frac{10}{\pi} \sin 2\pi\right) - \left(-\frac{10}{\pi} \cos 0 - \frac{10}{\pi} \sin 0\right)$   $= 60 - \frac{10}{\pi} - \left(-\frac{10}{\pi} - \frac{10}{\pi} \times 0\right)$   $= 60 - \frac{10}{\pi} + \frac{10}{\pi}$   $= 60 \text{ m}^2$ 

(e)  $A = Cross-sectional = \int T dx$ area of goldseam 0  $= \int_{0}^{\pi} \left(0.2 - 0.002(20 - x)^{1.5}\right) dx$ 

 $A = \left[0.2x - \frac{0.002}{2.5 \times (-1)} (20 - x)^{2.5}\right]_0^{20}$  $A = \left\{0.2 \times 20 + \frac{0.002}{2.5}(0)^{2.5}\right\} - \left(0 + \frac{0.002}{2.5}(20)^{2.5}\right)$ Recall  $\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$ 

Volume of gold Volume of seam =  $V = 2.5689 \times 40 \text{ m}^3 = 102.7567 \text{ m}^3$  $= \frac{0.2}{100} \times \text{ Vol. of seam}$ ≈ 0.206 m<sup>3</sup>

| Percentage of total amount = 0.9552786 × 100 % of gold he can now mine = 37.1861 % = 37% to nearest per cent | $R = 0.002 \left[ 100 \times 20 - \left( 100 \times 15 + \frac{1}{2.5} \times 5^{2.5} \right) \right]$ $= 0.002 \left[ 2000 - 1500 - \frac{1}{2.5} \times 5^{2.5} \right]$ $= 0.9552786405 \text{ m}^2$ | The reduced = $R = \int_{15}^{20} T dx$<br>cross-sectional<br>area of gold seam<br>= 0.002 $\left[ 100x + \frac{1}{2.5} (20 - x)^{2.5} \right]_{15}^{26}$ |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|