Trial CAT 3 Solutions

	F	۴	Õ
$y \cdot 0 = \frac{4}{3}(x-2)$	$Gradient = \frac{4-0}{5-2} = \frac{4}{3}$	Reading from the graph, ccdar = $(2, 0)$, gum = $(5, 4)$	Question 1
	[MI]	[2A]	

$$3y = 4x - 8$$
 [1A]

$$\sqrt{4^3 + 3^2} = \sqrt{25} = 5$$
 [1A]
Neither. They are both the same distance from the cedar [1A]

$$(0, 0) \Rightarrow 0 = c$$
 [1A]

 $(5,4) \Rightarrow 4 = 25a + 5b$

ΘΘ

28 = 175a + 35b

Substitute into ①
$$4 = 25\left(\frac{-2}{5}\right) + 5h$$

$$4 = -10 + 5h$$

$$14 = 5h$$

$$\frac{14}{5} = b$$

$$y = \frac{-2}{5}x^2 + \frac{14}{5}x \qquad [1A]$$

$$\int_{0}^{\frac{\pi}{2}} x^{3} + \frac{\pi}{5} x \, dx - \frac{\pi}{2} (3 \times 4)$$
 [1M]
$$= \left[\frac{\pi}{2} x^{3} + \frac{14}{5} x^{2} \right]^{3} - 6$$

$$= \left[\frac{-2}{15}x^3 + \frac{14}{10}x^2\right]_0^3 - 6$$

$$= \left[\frac{-50}{3} + \frac{70}{2}\right] - [0+0] - 6$$
 [1M]

$$= \left| \frac{-30}{2} + \frac{70}{2} \right| - [0+0] - 6$$

$$= \left[-16.66 + 35 \right] - 6$$

$$= \left[18.33 \right] - 6$$
Area of Mark's farm $\approx 12.33 \text{ km}^2$
[1A]

Total 14 marks

$\frac{-2}{5}x^2 + \frac{14}{5}x dx - \frac{1}{2}(3 \times 4)$ Œ

$$\int_{0}^{\frac{-2}{5}x^{2}} x^{2} + \frac{14}{5}x \, dx - \frac{1}{2}(3 \times 4)$$
 [1M]
= $\left[\frac{-2}{2}x^{3} + \frac{14}{12}x^{2} \right]^{3} - 6$

$$= \left[\frac{-2}{15}x^3 + \frac{14}{10}x^2\right]_0^3 - 6$$

$$= \left[\frac{-50}{3} + \frac{70}{2}\right] - [0+0] - 6$$

$$= \left[-16.66 + 35\right] - 6$$
[1]

$$\frac{-50}{3} + \frac{70}{2} - [0+0] - 6$$

$$\frac{-50}{3} + \frac{70}{2} - [0+0] - 6$$

$$\frac{11M}{16.66 + 35} - 6$$

$$\frac{8.33}{3} - 6$$

$$\frac{11M}{16.06} = \frac{11M}{16.06}$$

a. The period is given by one revolution $T=\frac{2\pi}{n}$

$$T = \frac{2\pi}{n}$$

$$= \frac{2\pi}{n}$$

$$= \frac{2\pi}{\pi}$$

$$= \frac{4 \text{ minutes}}{2}$$

$$= 4 \text{ minutes}$$
So two revolutions will take 8 minutes [1 A]
$$12 + 10 = 22 \text{ metres}$$

$$12 - 10 = 2 \text{ metres}$$

$$[1 A]$$

d.
$$12 - 10\cos\frac{\pi}{2}t = 18$$

<u>=</u>

$$-10\cos\frac{\pi}{2}t = 6$$

$$\cos\frac{\pi}{2}t = -\frac{3}{5}$$

$$\cos\frac{\pi}{2}t \approx 2.21$$

$$t \approx \frac{2.21 \times 2}{\pi}$$

$$t \approx 1.41$$
 as required
.4 (134, 0) B(50, 12) from diagram
 $m = \frac{12 - 0}{50 - 134} = \frac{12}{-84} = \frac{-1}{7}$

A (134, 0)
$$B(30, 12)$$
 rom diagram
$$m = \frac{12 - 0}{50 - 134} = \frac{12}{-84} = \frac{-1}{7}$$
[1M]

$$y - 0 = \frac{-1}{7}(x - 134)$$
 [1M]

$$y = \frac{1}{7}(134 - x)$$
 as required
 $(y - 12)^2 + x^2 = 10^2$ ①

$$y^{2} - 24y + 144 + 1756 - 1876y + 49y^{3} = 100$$

$$50y^{3} - 1900y - 1800 = 0$$

$$y^{2} - 38y - 360 = 0$$

$$(y - 20\chi) - 18) = 0$$

$$y = 20, 18 = 114 - 7 \times 20 = -6$$
when $y = 20, 18 = 114 - 7 \times 20 = -6$

when
$$y = 20$$
, $x = 134 - 7 \times 20 = -6$
when $y = 18$, $x = 134 - 7 \times 18 = 8$
The points of intersection are (-6, 20) and (8, 18) as required.

 $12 - 10\cos\frac{\pi}{2}t = 20$ $-10\cos\frac{2}{7}t = 8$ $\cos\frac{\pi}{2}l = \frac{-4}{5}$ $\frac{\pi}{2}t = \pi + 0.64$ $\frac{\pi}{2}I = \pi - 0.64, \ \pi + 0.64$

Mathematical Methods Trial CAT 3 1999 Solutions

The difference between the times at h = 20 and h = 18 is 2.41 - 1.41 = 1.00 minute One revolution takes 4 minutes, so the percentage of time will be From part we have t = 1.41 minutes when h = 18

$$\frac{1}{4} \times \frac{100}{1} = 25\%$$
 [1A]

Fotal 13 marks

Question 3 a. When x = 1

$$h_1(1) = 3 - \frac{1}{4}$$

$$h_2(1) = Ae^{-R(1-1)} - 0.5 = \frac{11}{4}$$

$$h_1(1) = Ae^{-h(1-1)} - 0.5 = \frac{11}{4}$$

$$Ae^0 = \frac{11}{4} + \frac{1}{2}$$

X

$$A \approx 3.25$$
 as required

i.
$$h_1'(x) = -\frac{1}{2}x$$

$$h_1'(x) = -\frac{1}{2}x$$
 [1A]

$$h_1'(x) = -Ake^{-k(x-1)}$$

[1A]

$$h_1(x) = -Ax^2$$

When $x = 1$, $h_1'(1) = -\frac{1}{2}$

If the slide is smooth at
$$x = 1$$
, then

$$h'_{1}(1) = -\frac{1}{2}$$

$$-A(e^{-t(x-1)}) = -\frac{1}{2}$$
[1M]

$$k = \frac{1}{13} \approx 0.15$$
 [1A]
$$k = \frac{1}{13} \approx 0.15$$
 [1A]

$$h_1(2) = \frac{13}{4} e^{\frac{1}{13}(2-1)} - 0.5$$
 [1M]
= $\frac{13}{4} e^{\frac{1}{13}} - 0.5$
= 2.29 [1A]

metres, $h_1(x) = 1$, so $h_2(x) = 1$ metre also. $h_1(x) = \frac{13}{4}e^{-\frac{x}{13}(x-1)} - 0.5 = 1$ <u>=</u>

when x = 0, $h_1(x) = 3$ metres. After a descent of 2

$$\frac{13}{4}e^{\frac{-2}{13}(z-1)} = 1.5$$

$$e^{\frac{-1}{13}(z-1)} = \frac{6}{13}$$

$$e^{-\frac{1}{13}(x-1)} = \frac{6}{13}$$

$$x - 1 = \frac{13}{2}\log_x\left(\frac{6}{13}\right)$$

$$x = 1 - \frac{13}{2}\log_x\left(\frac{6}{13}\right)$$

$$x = 1 - \frac{13}{2}\log_x\left(\frac{6}{13}\right)$$

$$x - 1 = -\frac{13}{2} \log_{r} \left(\frac{13}{13}\right)$$

$$x = 1 - \frac{13}{2} \log_{r} \left(\frac{6}{13}\right)$$

$$= 1 + \frac{13}{2} \log_{r} \left(\frac{13}{6}\right)$$

$$x = 6.03$$

$$x = 1 - \frac{13}{2} \log_{x} \left(\frac{6}{13} \right)$$
$$= 1 + \frac{13}{2} \log_{x} \left(\frac{13}{6} \right)$$
$$x \approx 6.03$$

Ī

For correct shape [1M], for correct labels [1M]

When
$$x = 4$$
, $h'_{2}(4) = -\frac{13}{4} \left(\frac{2}{13}\right) e^{-\frac{2}{13}(1-1)}$
$$= -\frac{1}{2} e^{-\frac{6}{13}}$$
$$= -0.315$$

<u>=</u>

gradient of the tangent is

$$\frac{-1}{-0.315} = 3.173$$
 [1M]

$$h_2(7) = \frac{13}{4} e^{\frac{-2}{13}(7-1)} - 0.5 \approx 0.791$$
 [1M]

$$(y-0.791) = 3.173(x-7)$$

 $y = 3.173x - 21.42$ [1A]

Page 1

© The Mathematical Association of Victoria 1999

					۵	4
	; =:				£.	(Contract of the contract of
642-65	By Symmetry, Pr(X < 65.8) = Pr(X > 64.2) = 0.6	= Pr(Z > 0) = 0.5	$= \Pr(Z > \frac{0}{y})$	$Pr(X > 65) = Pr(Z > \frac{65 - 65}{V})$	Since $\mu = 65 \ \sigma = y$	
	[<u>A</u> 1]	[1A]				

$$Pr(X < 65.8) = Pr(X > 64.2) = 0.6$$
 [1A]
 $z = \frac{64.2 - 65}{Y}$ [1M]

If
$$Pr(X > 64.2) = 0.6$$
, then
 $Pr(z > \frac{-0.8}{y}) = 0.6$

ν π <u>-0.8</u>

[<u>A</u>]

By symmetry,
$$Pr(z < \frac{0.8}{\nu}) = 0.6$$

From the normal distribution table

From the normal distribution tables,
$$\frac{0.8}{y} = 0.253$$

<u>X</u>

$$Pr(X > 63) = Pr(z > \frac{63 - 65}{3.162})$$
 [1M]

.v≈ 3.16

$$Pr(X > 63) = Pr(z > \frac{-2}{3.162})$$

$$Pr(X > 63) = Pr(z < \frac{2}{3.162})$$
[1M]

The 95% probability interval can be expressed as
$$\mu - 2\sigma \le x \le \mu + 2\sigma$$

Pr(V > 63) = Pr(z < 0.6325)

$$\mu - 2\sigma \le x \le \mu + 2\sigma$$

$$65 - 2(3.162) \le x \le 65 + 2(3.162)$$

$$58.7 \le x \le 71.3$$
11.41

$$\hat{p} = \frac{39}{200} = 0.195$$
 [1A]

$$se(\hat{p}) = \sqrt{\frac{39(161)}{200(200)}} = 0.028$$

Œ.

$$se(\hat{p}) = \sqrt{\frac{200}{200} \left(\frac{200}{200}\right)} = 0.028$$

$$\hat{p} - 2se(\hat{p}) \le p \le \hat{p} - 2se(\hat{p})$$

$$0.195 - 2(0.0280) \le p \le 0.195 + 2(0.0280)$$

$$p$$
 is the proportion of throws 65 m or greater in population.
 $p = 0.5$

 $0.139 \le p \le 0.251$

C The Mathematical Association of Victoria 1999

Since \hat{p} is more than two standard errors below p, sample of 200. Albert's suspicions are true. \hat{p} is the proportion of throws 65 m or greater in a

Total 17 marks

Total 60 Trial CAT 3 marks