What is the rate of change at which the dosage can be administered at the time when the

ဂ

child turns 10 years old?

Question 1

The dosage, D(t) gm, of a particular type of medicine for children aged 1 to 14 years, where tis the child's age, has been modelled by the equation

$$D(t) = \frac{at}{t+14}, 1 \le t \le 14,$$

where a is the adult dosage.

The dosage for an adult for this drug has been set at 600gm. How much should a four year old child be given?

[1 mark]

:: Based on this model, does a child become an 'adult' straight after its 14th birthday?

[2 marks]

Ö to when the child is 14 years old? What is the average rate of change of dosage given to a child from when the child is one

[2 marks]

Copyright © MAV 1997

:	:	:	:	;		ф.				;
	**************************************								**************************************	
	•	:		•	_				•	•
		1		1	01 × 10 -0400.	\$ ¥			:	
	:	1			^	S 3		Ė	:	1
:	•	•	:	•	ē.	· -				•
	•		•		ا	。 ज्ञ			•	1
	•	•	:	1	į	<u> </u>			:	;
	į	•	•	1	>	3 <u>0</u>				•
						- 5			•	
:	•	:	•	•						•
		}		•		鹳				•
	•	:	•	•		Ĩ		:	:	•
	•	:	:	1		ŏ		:	:	:
:	:	:	:	•		9		•	:	•
	•	•		ì		- 9				•
		:	:	:		3		•	:	:
	•	•	•	į		Š			:	1
		•	•	•		Ď.				
:		:		1		5		•		:
		:		•		5				•
;		•		:		0				•
•		•				ਠੁ				i
		i	:			3				:
:		:	•	•		- 2				:
			•			Ŧ				Ì
		•	:	•					:	1
:		•	:			+			:	1
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		•	•			+ 14				•
•		i	:			~-,			•	•
		•	:	1		5				:
:		•		1		<u> </u>				•
•			•			ğ				•
			•	•		7				•
			•	1		ñ				
:		•		•		<u>×</u>				
						ğ				•
:		;	:	:		Æ				:
		•	<u> </u>			5				•
			•			22				
3				:		4	73			
- i						7	5			1
<u> </u>		:	:	:		≲	י פו		:	:
[) markel				1		Show that $D(t)$ can be expressed in the form $a + \frac{k}{t+14}$ and hence show that the value	[2 marks]			
2 ፡		i	:	1		ក				:

On the set of axes below, sketch the graph of $D(t) = \frac{at}{t+14}$, $1 \le t \le 14$ for this

particular medicine.

: Clearly state the range of D(t), $1 \le t \le 14$.

[3 marks]

Based on a dosage d mg, the age of a child, T(d) years, can also be determined. Find an expression for the child's age, T(d), for a dosage d mg. [2 marks]

[3 marks]

Using part e., sketch the graph of T(d), stating both range and domain.

[3 marks]

Copyright @ MAV 1997

Mathematical Methods Units 3 & 4 Analysis Task Trial Examination

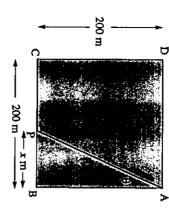
Show that if $-a\sec^2\theta + b\sec\theta\tan\theta = 0$ then $a\sec\theta = b\tan\theta$.

೨	
Ę	
3	
₫.	
3	
N	

- $y = a(1 \tan \theta).$ Given that $\frac{d}{d\theta}(\tan\theta) = \sec^2\theta$, find the derivative (with respect to θ) of
- [1 mark]
- Ξ: Find the derivative of $y = \frac{b}{\cos \theta}$
- ĘΞ Hence, show that $\frac{d}{d\theta} \left(a(1 - \tan \theta) + \frac{b}{\cos \theta} \right) = -a \sec^2 \theta + b \sec \theta \tan \theta$, where

[2 marks]

[2 marks]


 $\sec \theta = \frac{1}{\cos \theta}$ and $\tan \theta = \frac{\sin \theta}{\cos \theta}$.

stationary point when $\sin \theta = \frac{a}{b}$. Hence, show that the function $T(\theta) = a(1 - \tan \theta) + \frac{b}{\cos \theta}$ will have a

[2 marks]

Mathematical Methods Units 3 & 4 Analysis Task Trial Examination

the last 200m stretch. to run from the vertex A onto the muddy field and cut across to a point P somewhere on "cheat". Rather than running the last 400m along the perimeter of the track, she decides programme is to run "Square laps". On a particularly wet afternoon she decides to Simi the athelete is training for the Sydney 2000 Olympics. Part of her training

constant speed of 8 m/s. Simi can run through the muddy field at a constant speed of 5 m/s and on the track at a

:

Given that $\angle PAB = \theta$ where $0 \le \theta \le \frac{\pi}{4}$ and that PB = x,

ဂ

Show that $x = 200 \tan \theta$.

[1 mark]

:

;=: Find an expression in terms of θ for the time it takes Simi to run in a straight line from A to P.

[1 mark]

Mathematical Methods Units 3 & 4 Analysis Task Trial Examination

	Ξ÷
from P to C.	Find an expression in terms of θ
	in terms of θ for the time it takes Simi to run in a straight line

	:
[1 mark] vi. Hence, using part b., find the angle, θ, for which Simi's running time will be a minimum.	:
[2 m	:
	: :
[1 mark] iv. Hence show that the total time taken for Simi to run from A to C via P can be expressed in the form $T(\theta) = 200 \left[a(1 - \tan \theta) + \frac{b}{\cos \theta} \right]$:

Total 18 marks

[2 marks]

Question 3

exponential function; to produce 'A Grade' quality dishes at the end of their course has been shown to follow an The rate, $\frac{dL}{dt}$, at which inexperienced students at the Fabietto Cooking School are able to learn

$$\frac{dL}{dt} = -Ake^{-kt}, 0 \le t \le 20$$

cooking class and L is a measure of the number of dishes he has produced in the last t weeks. where t is measured in the number of weeks from when an inexperienced student starts his first

How long does the course run for?

[1 mark]

Ġ Show that $L(t) = Ae^{-kt} + C$, $0 \le t \le 20$

[1 mark]

Show that A + C = 15

All student must have had 15 attempts at cooking prior to attending the course.

[2 marks]

Mathematical Methods Units 3 & 4 Analysis Task Trial Examination

	F
Show that $Ae^{-5k} + C = 45$.	During the five weeks of the course, the student will have produced 45 dishes.

[1 mark] iii. Given that $k=\frac{1}{5}$, find, to the nearest integer, the values of A and C. [3 marks] iv. How many dishes will an inexperienced student made by the end of the course?
Given that $k=\frac{1}{5}$, find, to the nearest in
est
est integer, the values of A and C.
est integer, the values of A and C.
Given that $k=\frac{1}{5}$, find, to the nearest integer, the values of A and C.
Given that $k=\frac{1}{5}$, find, to the nearest integer, the values of A and C.

[1 mark]

!				-
				7
			,	
			,	

9 During which week will the student have learned the most? All working leading to your answer must be shown.

Total 15 marks [3 marks]

Question 4

metres is given by sheets. The probability distribution for the number of faults in sheets measuring 'A' square The discrete random variable X denotes the number of faults (called seeds) that occur in glass

$$Pr(X = x) = \frac{\mu^x}{x!}e^{-\mu}, x = 0, 1, 2, ...$$

of glass. metres and is given by $\mu = k \times A$, where k is the rate at which faults occur per square metre The parameter μ measures the expected number of faults in a glass sheet of area A square

A manufacturer finds that glass sheets from her plant have faults which occur at random at a rate of 0.05 per square metre.

t (weeks)

[3 marks]

For glass sheets that measure 5 metres by 4 metres, show that $\mu = 1$

ii. one seed
[1 mark]
i. no seeds
[1 mark] b. For glass sheets that measure 5 metres by 4 metres, find the probability that there will be

Constraints & NAVA 11007

[1 mark]

Mathematical Methods Units 3 & 4 Analysis Task Trial Examination

iii. at least two seeds

[2 marks]
ii. exactly one that is rejected
[2 marks]
i. none that are rejected
10 glass sheets that measure 5 metres by 4 metres, there will be
d. If sheets with two or more seeds are rejected, find the probability that in a batch of
[3 marks]
one seed, it will in fact have 2 seeds.
c. Find the probability that if a glass sheet that measures 5 metres by 4 metres has at least
[2 marks]
· · · · · · · · · · · · · · · · · · ·