1994

MATHEMATICAL METHODS TRIAL CAT 3

Based on the Victorian Certificate of Education Mathematics Study Design.

CHEMISTRY ASSOCIATES P.O. BOX 2227 KEW, VIC., 3101 AUSTRALIA

TEL:(03) 9817 5374 FAX: (03) 9817 4334

email: chemas@vicnet.net.au

Internet: http://www.vicnet.net.au/~chemas/education.htm

CHEMISTRY ASSOCIATES 1998

STUDENT NUMBER			LETTE	R	
figures					
words					

Victorian Certificate of Education Mathematics 1994

MATHEMATICAL METHODS 1994 TRIAL CAT 3 Analysis Task

Reading time: 15 minutes
Total writing time: 1 hour 30 minutes

QUESTION AND ANSWER BOOKLET

Directions to students

Materials

Question and answer booklet of 10 pages including 2 blank pages for rough working.

There is a detachable sheet of miscellaneous formulas.

You may bring to the CAT up to four pages (two A4 sheets) of pre-written notes.

You may use an approved calculator, ruler, protractor, set-square and aids for curve-sketching.

The task

Detach the formula sheet from this booklet during reading time.

Ensure that you write your **student number** in the space provide on the cover of this booklet.

Answer all questions.

The marks allotted to each part of each question are indicated at the end of the part.

There is a total of 60 marks available for the task.

Unless otherwise indicated, the diagrams in this booklet are **not** drawn to scale.

All written responses should be in English.

At the end of the task.

Hand in this question and answer booklet.

CHEMISTRY ASSOCIATES 1994

1994 MATHEMATICAL METHODS TRIAL CAT 3

Question 1

The position x of a particle at time t is given by the equation $x = 2 \cos 2(t - \frac{\pi}{2}) + 1$.		
(i)	Find the position of the particle when $t = 0$.	
		(2 marks)
(ii)	What is the maximum value of x ?	
(11)	THE STATE STATE OF A S	
		(1 mark)
(:::\	What is the minimum value of x ?	
(iii)	what is the minimum value of x ?	
		(1 mark)

Question 1 (continued)

(iv)	At what time will the particle first reach the position $x = 0$. Give your answer to one decimal place.	
	(5 marks)	

(v) Sketch the graph of x for 0 t 2.

(i) Sketch the graph of $y = 4 - x^2$ showing turning points and intercepts with the axes.

(4 marks)

(ii) A rectangle with base on the x axis has its upper vertices on the curve $y = 4 - x^2$ Show this rectangle in a sketch if the base co-ordinates are (-a,0) and (a,0).

(1 mark)

(iii) Show that the area of this rectangle equals $8a - 2a^3$.

(2 marks)

1994 MATHEMATICAL METHODS TRIAL CAT 3

PAGE 4

Ques	stion 2 (continued)		
(iv)	For what value of <i>a</i> is the area a Give your answer to two decimal places.	maximum?	
(v)	What is this maximum area? Give your	(4 marks) answer to two decimal places.	

(1 mark)

Sketch the graph of $y = x^3 - 3x^2$, locating the turning points of the graph and giving their co-ordinates.

(5 marks)

Calculate the area of the region enclosed by the x axis and the graph. (ii)

(4 marks)

Question 3 (continued)

(iii)	Find the equation of the tangent to the graph at the point where $x = 1$.			

(4 marks)

(iv) On a separate set of axes, sketch the graph
$$y = \frac{1}{x^3 - 3x^2}$$
.

(4 marks)

Cumulative Normal Distribution

$$F(a) = \frac{1}{\sqrt{2}} - e^{-0.5t^2} dt$$

а	F(a)	а	F(a)	а	F(a)
0.0	0.500				
0.1	0.540	1.1	0.864	2.1	0.982
0.2	0.579	1.2	0.885	2.2	0.986
0.3	0.618	1.3	0.903	2.3	0.989
0.4	0.655	1.4	0.919	2.4	0.992
0.5	0.692	1.5	0.933	2.5	0.994
0.6	0.726	1.6	0.945	2.6	0.995
0.7	0.758	1.7	0.955	2.7	0.996
0.8	0.788	1.8	0.964	2.8	0.997
0.9	0.816	1.9	0.971	2.9	0.998
1.0	0.841	2.0	0.977	3.0	0.999

A lathe turns out brass cylinders with a mean diameter of $2.000\,\mathrm{cm}$ and standard deviation $0.002\,\mathrm{cm}$. Assuming that the diameters are normally distributed

(i)	Find the probability that a randomly selected cylinder will have a diameter less than 1.998 cm

(5 marks)

1994 MATHEMATICAL METHODS TRIAL CAT 3

Question 4 (continued)

(ii)	If specifications require that acceptable cylinders must have a diameter between 1.999 cm and 2.001 cm, find the probability that a randomly selected cylinder is acceptable.
·	
	(5 marks)
(iii)	The profit on an acceptable cylinder, that is, one whose diameter lies between the specified limits, is \$3.00 while unacceptable cylinders incur a loss of \$1.00. If P dollars is the profit on a randomly selected cylinder produced on the lathe, find the mean and variance of P .

(8 marks)

ROUGH WORKING

ROUGH WORKING

End Of Questions 1994 Mathematical Methods Trial Cat 3

CHEMISTRY ASSOCIATES PO BOX 2227

KEW

VICTORIA AUSTRALIA 3101

TEL: (03) 9817 5374 FAX: (03) 9817 4334

chemas@vicnet.net.au email:

Internet: http://www.vicnet.net.au/~chemas/education.htm

1994 MATHEMATICAL METHODS TRIAL CAT 3 SUGGESTED SOLUTIONS

Question 1

(i)

When t = 0, $x = 2 \cos 2(-\frac{1}{2}) + 1$ $= 2 \cos (-\frac{1}{2}) + 1$ = -2 + 1= -1 **ANS** (ii)

The maximum value of x occurs

when $2 \cos 2(t - \frac{1}{2}) = 2$.

That is, x = 2 + 1 = 3 **ANS**

(iii)

The minimum value of x occurs

when $2 \cos 2(t - \frac{1}{2}) = -2$.

That is, x = -2 + 1 = -1 **ANS**

(iv) $2\cos 2(t-\frac{\pi}{2}) + 1 = 0$

 $2\cos 2(t-\frac{\pi}{2}) = -1$

 $\cos 2(t - \frac{1}{2}) = -\frac{1}{2}$

 $2(t-\overline{2}) = -\overline{3}$

 $=\frac{2}{3}$

 $(t-\overline{2})=\overline{3}$

 $t = \frac{1}{3} + \frac{1}{2}$

 $=\frac{2+3}{6}$

 $=\frac{5}{6}$

t = 2.6 **ANS**

(v)

(iii)
$$A = L \times W$$

= $2a (4 - a^2)$
= $8a - 2a^3$

$$\frac{dA}{dx} = 8 - 6a^2 = 0 \text{ for a turning point.}$$

Hence,
$$6a^2 = 8$$
$$a^2 = \frac{4}{3}$$

therefore,
$$a = \pm \frac{2}{\sqrt{3}}$$

= ± 1.1547

When
$$a > 1.1547$$
, say 2, $\frac{dA}{dx} = 8 - 24 < 0$

When
$$a < 1.1547$$
, say 1, $\frac{dA}{dx} = 8 - 6 > 0$.

Therefore, a maximum occurs when a = 1.15 to two decimal places. **ANS**

(v)
$$A = 8a - 2a^{3}$$

$$= 8 \times \frac{2}{\sqrt{3}} - 2 \times \frac{8}{3\sqrt{3}}$$

$$= \frac{16}{\sqrt{3}} - \frac{16}{3\sqrt{3}}$$

$$= \frac{48 - 16}{3\sqrt{3}}$$

$$= \frac{32}{3\sqrt{3}}$$

$$= 6.16 \text{ sq units.} \quad \mathbf{ANS}$$

1994 MATHEMATICAL METHODS TRIAL CAT 3 SUGGESTED SOLUTIONS

Question 3

(i)

 $y = x^2 (x - 3)$. The x intercept occurs when y = 0. Hence, x = 0 or 3.

The y intercept occurs when x = 0. Hence, y = 0.

$$y = x^3 - 3x^2$$

Hence, $\frac{dy}{dx} = 3x^2 - 6x = 0$ for a turning point.

Hence, 3x(x - 2) = 0.

Therefore, x = 0 or 2.

When x = 0, y = 0.

When x = 2, y = 8 - 12 = -4.

Therefore, (0,0) and (2,-4) are turning points.

Hence, the graph is

(ii)

$$A = \int_{0}^{3} x^3 - 3x^2 dx$$

$$= \frac{x^4}{4} - x^3$$

$$= \frac{81}{4} - 27$$

$$= \frac{81 - 108}{4}$$

Area = $6\frac{3}{4}$ sq units under the *x* axis. **ANS**

(iii)

Equation of the tangent is y = mx + c.

$$m = \frac{dy}{dx} = 3x^2 - 6x$$

When x = 1, m = 3 - 6 = -3.

Hence, y = -3x + c.

On the curve, when x = 1, y = 1 - 3 = -2.

Hence, on the line, when x = 1, y = -2.

Hence, -2 = -3 + c.

Therefore, c = 1.

Hence, the equation of the tangent to the curve

at the point where x = 1 is

y = -3x + 1 or y = 1 - 3x. **ANS**

1994 MATHEMATICAL METHODS TRIAL CAT 3 SUGGESTED SOLUTIONS

Page 4

Question 3 (continued)

Question 4

(i) $Z = \frac{X - \mu}{0.002} = \frac{1.998 - 2.000}{0.002} = -$	(ii) $Z = \frac{X - \mu}{0.002} = \frac{2.001 - 2.000}{0.002} = 0.5$
1 Pr $(X < 1.998)$ = Pr $(Z < -1)$ = Pr $(Z > 1)$ = 1 - Pr $(Z < 1)$ = 1 - 0.840 = 0.160 ANS	$Pr (1.999 < X < 2.001)$ = $Pr (X < 2.001) - Pr (X < 1.999)$ = $Pr (Z < 0.5) - Pr (Z < -0.5)$ = $Pr (Z < 0.5) - Pr (Z > 0.5)$ = $Pr (Z < 0.5) - [1 - Pr (Z < 0.5)]$ = $2 Pr (Z < 0.5) - 1$ = $2 \times 0.692 - 1$ = 0.384 ANS

(iii)

P	3	-1
$\frac{1}{\mathbf{Dr}(D-n)}$	0.384	0.616
$\Gamma\Gamma(\Gamma-P)$	0.304	0.010

$$\mu = x \text{ Pr } (X = x) = 1.152 - 0.616 = \$0.536 = \$0.54 \text{ ANS}$$

$$^{2} = E(X^{2}) - \mu^{2} = 9 \times 0.384 + 0.616 - (0.536)^{2} = 4.072 - 0.287296 = $3.78$$
 ANS

End Of Suggested Solutions 1994 Mathematical Methods Trial Cat 3 CHEMISTRY ASSOCIATES PO BOX 2227

KEW

VICTORIA AUSTRALIA 3101

TEL: (03) 9817 5374 FAX: (03) 9817 4334

chemas@vicnet.net.au email:

Internet: http://www.vicnet.net.au/~chemas/education.htm