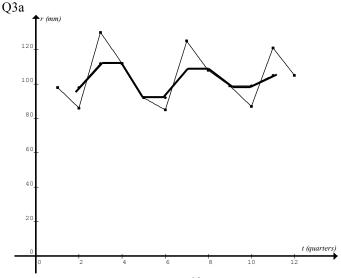


2007 Further Mathematics Trial Exam 2 Solutions Free download and print from www.itute.com Do not photocopy © Copyright 2007 itute.com



Q1b
$$30 \le x < 35$$

$$\begin{aligned} &Q1c \quad \text{Average age} \\ &= \frac{17.5 \times 5 + 22.5 \times 35 + 27.5 \times 55 + 32.5 \times 60 + 37.5 \times 45}{200} \approx 30 \end{aligned}$$

Q2a Graphics calculator R = -0.90 + 130.50D, r = 0.94.

Q2b The residual plot shows a random pattern that indicates the least squares regression line and not a non-linear relationship is a suitable model for the data set.

Q3b
$$Seasonal\ index = \frac{actual figure}{dease a sonal is ed figure}$$

First quarter
$$S.I. = \frac{98}{105}$$
 or $\frac{92}{99.3}$ or $\frac{99}{106.9} = 0.926$

Second quarter
$$S.I. = \frac{86}{104.0} = 0.827$$

Third quarter
$$S.I. = \frac{130}{107.9} = 1.205$$

Fourth quarter
$$S.I. = \frac{112}{107.5} = 1.042$$

Q3c There was a slight downward trend in quarterly rainfall over the 3-year period.

Q3d For t = 13, deseasonalised rainfall $r = -0.3329 \times 13 + 106.2 = 101.9$ mm, \therefore seasonal rainfall = deseasonalised rainfall \times S.I. = $101.9 \times 0.926 = 94.4$ mm

Q3e The extrapolation is not reliable because $|correlation\ coefficient| = 0.4256$ is too low, which shows that there were large fluctuations in quarterly rainfall.

Module 2: Geometry and trigonometry

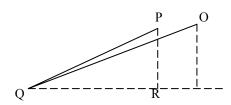
Q1a
$$PQ = QR = RP = \sqrt{1^2 + 1^2} = \sqrt{2}$$

 $\angle PQR = \angle QRP = \angle RPQ = 60^\circ$

Area of $\triangle PQR = \frac{1}{2} \times \sqrt{2} \times \sqrt{2} \times \sin 60^{\circ} = 0.866 \approx 0.9 \text{ m}^2$

Q1b Volume of each corner = $\frac{1}{3} \left(\frac{1}{2} \times 1 \times 1 \right) \times 1 = \frac{1}{6} \text{ m}^3$

Volume of resulting shape = $2^3 - 8 \times \frac{1}{6} = 6.7 \text{ m}^3$


Q1c Total surface area of 2-m cube with one corner removed = $6(2 \times 2) - 3(\frac{1}{2} \times 1 \times 1) + 0.866 = 23.366 \text{ m}^2$

Linear scale factor = 2, \therefore area scale factor = $2^2 = 4$. \therefore total surface area = $23.366 \times 4 = 93.5 \text{ m}^2$

Q2a Horizontal distance = 450 + 150 = 600 mVertical distance 400 - 50 = 350 m

Average slope of QO = $\frac{350}{600} = \frac{7}{12}$.

Q2b

Average slope of $QP = \frac{300}{450} = \frac{8}{12}$, ... QP is steeper than QO and point P is above the line of sight OQ. ... the view of Q from O is blocked by PR.

Q3a
$$\angle CAB = 82 - 22 = 60^{\circ}$$
, $\angle CBA = 98 - 28 = 70^{\circ}$

Q3b
$$\angle ACB = 180 - 60 - 70 = 50^{\circ}$$

The sine rule,
$$\frac{CA}{\sin 70^{\circ}} = \frac{120}{\sin 50^{\circ}}$$
, $CA = 147.2 \text{ m}$

Q3c Let h be the height of the flag pole.

$$\frac{h}{147.2} = \tan 5^{\circ}, \ h = 12.8785 \approx 12.9 \text{ m}$$

Q3d Use the sine rule to find CB,
$$\frac{CB}{\sin 60^{\circ}} = \frac{120}{\sin 50^{\circ}}$$
, $CB = 135.662$ m.

Angle of elevation =
$$\tan^{-1} \left(\frac{12.8785}{135.662} \right) = 5.4^{\circ}$$

Module 3: Graphs and relations

Q1a
$$n = 55$$

Q1b When
$$n = 55$$
, $R = \frac{3200}{11} \times 55 = 16000$.

Gradient (slope) of cost graph =
$$\frac{16000 - 5000}{55} = 200$$
,

$$\therefore C = 200n + 5000$$

Q1ci
$$P = R - C = \frac{3200}{11}n - (200n + 5000),$$

 $P = \frac{1000}{11}n - 5000.$

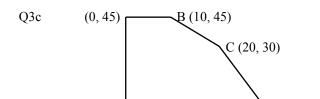
Q1cii When
$$n = 50$$
, $P = \frac{1000}{11} \times 50 - 5000 = -454.55$.
The loss is \$454.55.

Q2a From graph, distance = 3.5 km

Q2b Average speed =
$$\frac{3.5}{40/60}$$
 = 5.25 km per hour

Q2c Highest speed (maximum gradient) occurred at t = 33 min.

Highest speed = gradient of tangent at t = 33 min $\approx \frac{2}{10/60} = 12 \text{ km per hour.}$


Q3a
$$P = 1.80x + 1.20y$$

O3b
$$x \ge 0$$
, $y \ge 0$.

Cabernet wine:
$$\frac{1}{2}x + \frac{1}{6}y \le 15$$
, $\therefore 3x + y \le 90$

Shiraz wine:
$$\frac{1}{2}x + \frac{1}{3}y \le 20$$
, $\therefore 3x + 2y \le 120$

Mataro wine:
$$\left(1 - \frac{1}{6} - \frac{1}{3}\right) y \le 22.5$$
, $\therefore y \le 45$

Q3d Any point on line segment BC gives maximum profit. Only point C (20, 30) has the greatest number of litres of X and the least number of litres of Y.

(30, 0)

Greatest number of litres of $X = 20\ 000$ Least number of litres of $Y = 30\ 000$

(0, 0)

Q3e Max $P = 1.80 \times 20 + 1.20 \times 30 = 72$ Max possible profit = \$72 000.

Module 4: Business-related mathematics

Q1a Let A_{2005} be the total cost at the start of 2005.

$$A_{2006} = \left(1 + \frac{5}{100}\right) A_{2005} \text{ and } A_{2007} = \left(1 + \frac{10}{100}\right) A_{2006}.$$

$$\therefore A_{2007} = \left(1 + \frac{10}{100}\right) \left(1 + \frac{5}{100}\right) A_{2005}$$

$$\therefore 100 = 1.10 \times 1.05 \times A_{2005}$$
, $\therefore A_{2005} = \frac{100}{1.10 \times 1.05} = \86.58

Q1b Inflation =
$$100 - 86.58 = 13.42$$

Annual inflation rate =
$$\frac{13.42}{86.58 \times 2}$$
 = 0.0775 = 7.75%

Q2a

Date	Deposit	Withdrawal	Balance
1/8			\$2325.80
3/8		\$201.50	\$2124.30
12/8	\$570.00		\$2694.30
17/8		\$89.75	\$2604.55
23/8		\$364.20	\$2240.35
29/8	\$230.00		\$2470.35

Minimum balance for August is \$2124.30.

Q2b Interest =
$$2124.30 \times \frac{3.5}{100} \times \frac{1}{12} = $6.20$$

Q2c Balance =
$$2470.35 + 6.20 = $2476.55$$

Q3a TVM Solver \$1505.59

O3b Interest =
$$1505.5921 \times 240 - 180000 = $181342.10$$

Q3c TVM Solver 217.4838191 months, i.e. 218 months or 18 years 2 months.

Q3d Amount owing after 217 months, TVM Solver \$722.45

Final repayment =
$$722.45 \times \left(1 + \frac{7.35}{100 \times 12}\right) = $726.88$$

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors