aced

Units 3&4 Chemistry Trial Exam 2024 (Trial 1) – Assessment Guide

Section A

VCAA Key Knowledge

Question

Answer Guide

 body measured in kl g⁻¹: carbohydrates, proteins and lipids (fats and oils) Fats and oils have a higher energy content than carbohydrates because A. carbohydrate molecules have a higher degree of oxidation than fats and oils. B. fats and oils are more easily broken down during digestion. C. foods generally contain more fats than carbohydrates per gram. D. fats and oils are composed of triglycerides with long 	fuel sources for the	Question 2	Α	The amount of energy
hydrocarbon chains.	body measured in kJ g ⁻¹ : carbohydrates, proteins and lipids (fats and oils)	 Fats and oils have a higher energy content than carbohydrates because A. carbohydrate molecules have a higher degree of oxidation than fats and oils. B. fats and oils are more easily broken down during digestion. C. foods generally contain more fats than carbohydrates per gram. D. fats and oils are composed of triglycerides with long hydrocarbon chains. 		released depends on the degree of oxidation of molecules. Carbohydrates have a higher degree of oxidation than fats and oils per unit mass, therefore releasing less energy on combustion.

changes in enzyme function in terms of structure and bonding as a result of increased temperature (lenaturation), decreased temperature (lowered activity)Question 4 Fermentation of glucose to produce bioethan the equation: $C_6H_{12}O_6(aq) \rightarrow 2C_2H_5OH(I) + 2C_2H_5O$	BFermentation involves protein enzymes for a fast reaction rate. At high temperatures, these enzymes will be denatured.Derature increases.at higherI must be kept in ase in temperaturease in temperature
--	--

enthalpy changes	Question 5	D	n (butane) = m/M
(ΔH) measured in kJ,	The amount of energy released when 10.0 kg of liquid butar	ie	= 10000/58.0
changes measured	undergoes complete combustion in a portable stove is equal to		= 172.4 mol
in kJ mol ⁻¹ and	A. 497 kJ		Δ H Butane = -2880 kJ mol $^{-1}$
enthalpy changes for mixtures	B. 4.97 x 10 ² J		E = 2880 x 172.4
measured in kJ g ⁻¹	C. 497000 J		$= 4.97 \times 10^5 kJ$
	D. 4.97 x 10 ⁵ kJ		

Question 6

the common design features and general operating principles of commercial electrolytic cells (including, where practicable, the removal of products as they form), and the selection of suitable electrode materials the electrolyte (including its state) and any chemical additives that result in a desired electrolysis product (no specific cell is required)

The diagram held

The diagram below shows a commercial, electrolytic cell, used in the production of magnesium metal. Which option shows the correct half equation and electrode combination for the cell when it is in operation?

A Chlorine gas is produced at the anode, the positive electrode, during electrolysis. Chloride ions in the molten electrolyte are reduced during the reaction.

No water is present in the cell, so H_2O is not oxidised and magnesium ions are not in the aqueous state.

- A. $2Cl^{-}(l) \rightarrow 2e^{-} + Cl_{2}(g)$ at the positive electrode
- **B.** $2e^{-} + Cl_2(g) \rightarrow 2Cl^{-}(I)$ at the cathode
- **C.** $2H_2O(I) \rightarrow O_2(g) + 4H^+(aq) + 4e^-$ at the anode
- **D.** $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ at the negative electrode

Question 7

calculations related

to the application of

stoichiometry to

fuels, including

volume

mass-mass, massvolume and volume-

stoichiometry, to

product amounts

and net volume or mass of major greenhouse gases (CO₂, CH₄ and H₂O), limited to standard laboratory conditions (SLC)

determine heat energy released,

reactant and

reactions involving the combustion of The steel tank shown in the image below contains 9.1 kg of propane. What volume of carbon dioxide will be released into the atmosphere if this mass of propane undergoes complete combustion at SLC?

 $C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g)$ + 4H₂O(l) n(C₃H₈) = m/M = 9.1 x 1000/(3x12.0 + 8x1.0) = 206.8 mol n(CO₂) = n(C₃H₈) x 3/1 = 620.5 mol V = n x Vm = 620.5 x 24.8 = 15387L or 1.5 x 10⁴ L

С

Α.	1.7 x	10 ³	L
В.	1.8 x	10 ³	L

- **C.** 1.5×10^4 L
- **D.** 1.6 x 10⁴ L

Question 8

identification of bond types by qualitative infrared spectroscopy (IR) data analysis using characteristic absorption bands

Which organic compound could have produced the infrared spectrum shown below?

C The bonds present in the molecule are likely to be:
 C=O (ketone) at ~1700cm⁻¹
 C-H at ~2850-3090cm⁻¹
 This is characteristic of a ketone. 2-butanone is the only ketone molecule in the list of responses.

- A. ethanol
- B. propanoic acid
- C. 2-butanone
- D. ethanamine

Use the following information to answer Questions 9 and 10. The chemical equation for the complete combustion of methane, at constant temperature and pressure, is shown below:

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

redox reactions as simultaneous	Que	estion 9		С	Fuels are oxidised during
oxidation and	vvn	ich option correctly identifies the s	species being reduced		compustion, so O_2 is being
reduction processes,	and	the oxidation number of the oxida	ant during the complete		reduced. The oxidant is the
oxidation numbers	combustion of methane?				species that is reduced (O_2)
to identify the		Species being reduced Ox	kidant oxidation number		which has an oxidation
oxidising agent and	Α.	CH4(g)	-2		element
conjugate redox	В.	CH ₄ (g)	+1		
pairs	C.	O ₂ (g)	0		
	D.	O ₂ (g)	-4		
determination of	Que	estion 10		Α	n((CH ₄) = 100/(12.0 + 4.0)
reagents in chemical	100	g of methane undergoes complet	e combustion in 600 g of		= 6.25 mol
reactions	oxygen at SLC. Calculate the volume of carbon dioxide				$n(O_2) = 600/(16.0 + 16.0)$
	pro	duced during the reaction.			= 18.75 mol
	Α.	155 L			Oxygen reacts in a 2:1 ratio
	В.	233 L			so methane is limiting.
	C.	465 L			$n(CH_4) = n(CO_2)$
	D.	620 L			$V(CO_2) = n \times Vm$
					= 6.25 x 24.8
					= 155 L
the construction of					
balanced half-	Que	estion 11		Α	Half equations:
equations (including	Consider the unbalanced redox equation shown below:				$14H^{+}(aq) + Cr_2O_2^{-1}(aq) + 6e^{-1}$
states) for oxidation and reduction		$Fe^{2+}(aq) + Cr_2O_7^{2-}(aq) \to Fe^3$	³⁺ (aq) + Cr ³⁺ (aq)		$\rightarrow 2Cr^{3+}(aq) + /H_2O(l)$
overall redox cell	The	balanced, overall equation for this	s reaction in acidic		$Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$
reaction in both	con	ditions is			(multiply by 6 to balance
acidic and basic	Α.	$14H^{+}(aq) + 6Fe^{2+}(aq) + Cr_2O_7^{2-}(aq)$) \rightarrow 6Fe ³⁺ (aq) +		electrons)
conditions		2Cr ³⁺ (aq)+7H ₂ O(l)			
	В.	$14H^{+}(aq) + 8Fe^{2+}(aq) + Cr_2O_7^{2-}(aq)$) \rightarrow 8Fe ³⁺ (aq) +		Overall equation:
		$2Cr^{3+}(aq)+7H_2O(I)$			14H ⁺ (aq) + 6Fe ²⁺ (aq) +
	C.	$14H^{+}(aq) + 9Fe^{2+}(aq) + Cr_2O_7^{2-}(aq)$) \rightarrow 9Fe ³⁺ (aq) +		$Cr_2O_7^{2}(aq) \rightarrow 6Fe^{3+}(aq) +$
		2Cr ³⁺ (aq)+7H ₂ O(I)			2Cr ³⁺ (aq)+7H ₂ O(l)
	D.	$14H^{+}(aq) + 11Fe^{2+}(aq) + Cr_2O_7^{2-}(aq)$	q) \rightarrow 11Fe ³⁺ (aq) +		
		$2Cr^{3+}(aq)+7H_2O(I)$	• •		

Question 12

the common design features and general operating principles of fuel cells, including the use of porous electrodes for gaseous reactants to increase cell efficiency

of proteins,

molecules

(formation of

zwitterions and

denaturation)

carbohydrates and

fats and oils to break down large

biomolecules in food

to produce smaller

The diagram below shows a typical hydrogen fuel cell setup. Which statement correctly describes the processes occurring in the fuel cell?

- A. hydrogen is reduced and water is produced as a byproduct of the reaction
- **B.** an electric current is supplied to the cell to force the oxidation of hydrogen
- **C.** electrical energy is transformed into chemical energy as the cell operates
- **D.** oxidation occurs at the negative electrode and hydrogen ions travel from the anode to the cathode

In this cell, the negative electrode is the anode, the site of oxidation. Oxidised hydrogen ions travel through the electrolyte to the cathode.

D

The other options are incorrect because: Hydrogen gas is oxidised, not reduced, losing electrons at the anode. Fuel cells convert chemical energy to electrical energy and therefore do not require the input of electricity.

hydrolytic reactions Question 13

The structure below shows a zwitterion of a dipeptide in a neutral solution. Identify the two amino acid molecules that would be produced when this molecule undergoes hydrolysis.

- A. cysteine and glycine
- **B.** alanine and cysteine
- C. glycine and lysine
- D. valine and methionine

 A The amino acids are identified by their side chains.
 Cysteine R group: CH₂SH Glycine R group: H
 Dependent on the Data Book.

Question 14

the common design features and general operating principles of commercial electrolytic cells (including, where practicable, the removal of products as they form), and the selection of suitable electrode materials, the electrolyte (including its state) and any chemical additives that result in a desired electrolysis product (no specific cell is required)

The diagram below represents a basic cell set-up, with two solid electrodes and an electrolyte solution.

The positive electrode is the site of oxidation in this cell (anode). There must be an input of electrical energy to cause non-spontaneous cell reactions – an electrolytic cell. Electrical energy is being transformed into chemical energy and the oxidation of an impure metal at the positive electrode is one use for this type of cell.

С

https://commons.wikimedia.org/wiki/File:Coulometer_in_A_Horsfield,_%22The_Faraday_and_Its_Significance_in_Determining_the_Fund amental_Constants%22.jpg

The cell shown in the diagram could be used to

- A. provide a sustainable source of energy.
- B. convert chemical energy to electrical energy.
- **C.** oxidise an impure metal at the positive electrode.
- **D.** electroplate an object with copper at the positive electrode.

the application of	Question 15	С	In both cells:
Faraday's Laws and stoichiometry to	Two electrolytic cells are constructed to compare the mass of		Q = It
determine the	electroplated material that is deposited at the cathode. Both		= 20.0 x (15 x 60)
quantity of	cells operate for 15.0 minutes with a current of 20.0 A under		= 18000 C
and product, and the	standard conditions.		n(e⁻) = 18000/96500
current or time			= 0.187 mol
required to either	Cell A contains an object to be plated at the cathode, copper		n(metal) = 0.187/2
quantity of reactant	anode and electrolyte containing Cu ²⁺ ions.		= 0.0933 mol
or produce	Cell B contains an object to be plated at the cathode, tin anod	е	$m(Cu) = n \times M$
a particular quantity of product	and electrolyte containing Sn ²⁺ ions.		= 0.0933 x 63.5
			= 5.92 g
	Which statement is correct regarding the mass of metal plate	Ł	$m(Sn) = n \times M$
	at the cathode?		<i>= 0.0933 x 118.7</i>
	A. the mass of tin plated is the same as the mass of copper		= 11.1 g
	plated		
	B. almost 0.2 g more tin than copper is plated		11.1 – 5.92 = 5.15 g more
	C. just over 5 g more tin than copper is plated		tin than copper is plated.
	D. just over 10 g more tin than copper is plated		

characteristics of the	Question 16	В	Double bonds have a higher
carbon atom that contribute to the	Consider the following statements regarding the structure and		bond energy than single
diversity of organic	bonding of carbon atoms.	bonds – requiring more	
compounds formed, with reference to	I Carbon has a valence electron number of six.		energy to break. Bond
valence electron	II The bond energy of a carbon-to-carbon double bond is		energies can be found in
number, relative	greater than for a single carbon-to-carbon bond.		the Data Book.
bond strength, relative stability of	III Carbon and silicon have the same valence electron		Carbon is able to bond to
carbon bonds with	number and form a similar range of compounds.		itself and a range of other
other elements,	IV Carbon can form single and multiple bonds with itself		elements, resulting in the
degree of unsaturation and	and a range of other elements. Which of the statements above are correct?		vast number of organic
the formation of			molecules that exist.
structural isomers			Carbon's valence number is
	A. I and III only		4, not 6.
	B. II and IV only		While silicon has the same
	C. III and IV only		valence number, it does not
	D. I, II, III and IV		form a similar range of
			compounds.
structural	Question 17	D	Signal integration, or
determination of organic compounds	Which of the following pieces of information can be obtained		relative peak area, shows
by low and high	from the high-resolution 1 H spectrum of an organic		the ratio of hydrogen
resolution proton	compound?		atoms in each unique
nuclear magnetic resonance (¹ H-NMR)	A. the number of unique hydrogen environments, based on		environment. The higher

splitting patterns of the signals

spectral analysis,

using chemical shift

values, integration

curves (where the height is

the area underneath a peak) and peak

proportional to

splitting patterns

proton environments

(excluding coupling constants), and application of the n+1 rule (where n is the number of neighbouring protons) to deduce the number and nature of different

- **B.** the number of neighbouring hydrogen atoms adjacent to each environment, based on chemical shift data
- C. the length of the molecule, based on the number of signals
- **D.** the ratio of hydrogen atoms in each environment, based on signal integration
- relative peak area, shows the ratio of hydrogen atoms in each unique environment. The higher the integration, or peak area, the more hydrogen atoms are present in the environment that produced the peak.

the common design	Que	stion 18		Α	Discharge is galvanic –
features and general operating principles of rechargeable (secondary) cells	Seleo	ct the option that correctly de	efines the reactions occurring		spontaneous reactions with
	in a s	in a secondary cell.			chemical energy being
with reference to	Γ	During discharge	During recharge		transformed into electrical
discharging as a	A.	galvanic operation,	electrolytic operation,		energy. Oxidation occurs at
recharging as an		oxidation at negative	oxidation at positive		the negative terminal.
electrolytic cell,		electrode	electrode		Rochargo is alastrolytic
including the conditions required	В.	electrolytic operation,	galvanic operation,		nen spontaneous reactions
for the cell reactions		oxidation at positive	oxidation at negative		with electrical energy being
to be reversed and		electrode	electrode		transformed into chemical
polarities in each	С.	galvanic operation,	electrolytic operation,		energy Oxidation occurs at
mode		oxidation at positive	oxidation at negative		the positive electrode
		electrode	electrode		
	D.	electrolytic operation,	galvanic operation,		
		oxidation at negative	oxidation at positive		
		electrode	electrode		

and semi-structural (condensed) formulas and skeletal structures of alkanes (including cyclohexane), alkenes, benzene, haloalkanes, primary amines, primary amides, alcohols (primary, secondary and tertiary), aldehydes, ketones, carboxylic acids and non-branched esters

- **C.** 2-methylpropane
- **D.** 1,1-dimethylethane

H Source: https://commons.wikimedia.org/wiki/File:!sobutane_1.svg

the reaction $Q = [FeSCN^{2+}] / [Fe^{3+}][SCN^{-}]$ Question 20 В quotient (Q) as a The reaction $Fe^{3+}(aq) + SCN^{-}(aq) \rightarrow FeSCN^{2+}(aq)$ has a value of $= 0.1 / 0.01 \times 0.01$ quantitative K equal to 9×10^2 M⁻¹ at 25°C. $= 1000 M^{-1}$ measure of the extent of a chemical reaction: that is, the At a certain point in time during the reaction, at 25°C, the At this point in time, Q is relative amounts of concentration of each species was found to be: greater than K. The reverse products and reactants present reaction will be favoured to $[Fe^{3+}] = 0.01 \text{ M}$ during a reaction at [SCN⁻] = 0.01 M bring the reaction quotient a given point in time $[FeSCN^{2+}] = 0.1 M$ down until equilibrium is established. The relationship between Q and K, at this point in time, is **A.** Q > K and the forward reaction will be favoured. **B.** Q > K and the reverse reaction will be favoured.

- **C.** K > Q and the forward reaction will be favoured.
- **D.** K > Q and the reverse reaction will be favoured.

ACED Units 3&4 Chemistry Trial Exam (Trial 1) – Assessment Guide © ACED 2024. This exam is only licenced to the purchasing school. Page 8 of 37

trends in physical	Question 21	D	The more intermolecular
properties within homologous series	Select the structure below that is likely to have the lowest		bonds that form, the higher
(boiling point and	viscosity.		the viscosity.
melting point, viscosity), with reference to structure and bonding	 A. CH₃(CH₂)₉CH₃ B. CH₃CH₂COOH C. CH₃COCH₃ D. CH₃CHCHCH₂CH₃ 		Option D is the shortest molecule, does not contain polar functional groups and contains a double bond (kink), preventing the formation of intermolecular forces and lowering viscosity
			/
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required): the esterification between an alcohol and a carboxylic acid	Question 22 Which two molecules undergo a condensation reaction to produce the larger molecule shown in the diagram below? $O = CH_2 - CH_2 - CH_3$	A	The ester group (COO) is formed during condensation. Breaking the molecule at the COO bond shows that methanol and propanoic acid are the two molecules.
	Source: https://commons.wikimedia.org/wiki/File:%D8%A7%D9%84%D8%A7%D8%B3%D8%AA%D8%B1%D8%A7%D8%AA 1	.jpg	

- A. methanol and propanoic acid
- B. propan-1-ol and methanoic acid
- C. methyl propanoate and water
- D. propyl methanoate and water

condensation Question 24 В A condensation reaction reactions to involves the formation of a Which of the following is not produced via a condensation synthesise large reaction? covalent bond between two biologically important molecules monomers, with the Α. cellulose for storage as elimination of a small glucose Β. proteins, starch, molecule, usually water. glycogen and lipids C. an ester (fats and oils) Glucose is a monomer unit D. a triglyceride and is not formed through condensation with other molecules.

Question 25

The diagram below shows the mass spectrum of an unidentified, organic compound with molecular formula C₁₄H₁₄O₂.

D From the molecular formula, the molar mass of the organic compound is 214 g mol⁻¹. The base peak at m/z 77 could be produced by a benzene fragment that was bonded to the molecule (C_6H_5).

spectrum mass.png

quantitative data, including identification of molecular ion peak, determination of molecular mass and identification of simple fragments

applications of mass

(excluding features

of instrumentation

and operation) and

interpretation of

aualitative and

spectrometry

From the information provided, it can be assumed that

- A. the base peak is at m/z 214 and a $[CH_3CH_2]^+$ fragment is possible.
- **B.** the molar mass of the compound is 215 g mol⁻¹ and there are isotopes of carbon-13 in the compound.
- C. the m/z 121 peak could be produced by a $[C_8H_9O]^+$ fragment and the molecular mass of the compound is 216 g mol⁻¹.
- D. the molecular mass of the compound is 214 g mol⁻¹ and a benzene functional group could produce the peak with greatest abundance.

the roles and	Qu	estion 26	D	Mass spectrometry does
applications of laboratory and	Which of the following does not correctly describe an			not produce peak splitting
instrumental	inst	rumental analysis technique commonly used to determine		patterns. This is a feature
analysis, with	the	purity of commercial products?		of high-resolution ¹ H NMR
purity and the	Α.	using reference samples to determine the identity of		spectroscopy.
identification of		specific impurities using IR spectroscopy		
organic compounds	В.	using known standards and NMR spectra to analyse		
in isolation or within		organic samples for substitution of ingredients		
a mixture	C.	identifying additional peaks in IR spectra that should not		
		be present according to database records of pure		
		compounds		
	D.	identifying contaminant functional groups from peak		
		splitting patterns produced during mass spectrometry		
extraction and	Qu	estion 27	D	In order for the
purification of natural plant compounds as possible active ingredients for medicines, using	The	e solvent extraction process can be used to extract medicinal		components to dissolve
	cor	nponents from plants. For the process to work effectively		into the solvent, their
	Α.	both the solvent and the plant matter should be in liquid		polarities should be the
		form.		same (like dissolves like).
solvent extraction	В.	the temperature of the solvent should always be close to		
ana aistillätion		boiling point.		
	C.	the leaves should not be blended or shredded as this		

breaks down their structure.

D. the polarity of the component being extracted should be the same as the solvent.

Question 28

enzymes as protein-

primary, secondary, tertiary and

based catalysts in

living systems:

quaternary

structures and

structure and

temperature

decreased temperature

(denaturation),

changes in pH (formation of

zwitterions and

denaturation)

(lowered activity), or

changes in enzyme function in terms of

bonding as a result of increased Which option correctly lists specific bonding types present in the primary, secondary and tertiary folding patterns of protein molecules?

	Primary folding	Secondary folding	Tertiary folding
Α.	covalent bonds	covalent bonds	a variety of bond types
В.	hydrogen bonds	hydrogen bonds	a variety of bond types
C.	covalent bonds	a variety of bond types	dipole-dipole forces and ionic bonds
D.	covalent bonds	hydrogen bonds	covalent and hydrogen bonds

The primary structure of proteins involves the formation of covalent peptide links between amino acid residues. Secondary folding structures form due to hydrogen bonding between polar peptide link groups. *The C=O on one peptide* link and the N-H on another peptide link. Tertiary bonding can include a variety of bond types, depending on the Rgroups of the amino acids

in the protein chain.

D

Question 29

the accuracy, precision, repeatability, reproducibility, resolution and validity of measurements

volumetric analysis

A group of Year 12 students conducted multiple trials of a volumetric analysis investigation over several days. They noticed that their results fluctuated, depending on the student carrying out the titration each day. The results are shown in the table below:

Day	Conducted by	Volume of acid required to reach the end point (mL)
Mon	Student 1	24.50
Tues	Student 1	24.55
Wed	Student 1	24.55
Thurs	Student 1	24.45
Mon	Student 2	26.25
Tues	Student 2	26.20
Wed	Student 2	26.25
Thurs	Student 2	26.20

From the results, it can be concluded that

- A. the method has high repeatability.
- Β. the method has high reproducibility.
- C. results from Student 1 are more accurate than Student 2.
- results from Student 1 are more precise than Student 2. D.

Α The method has high repeatability under the same conditions as results show little range (high precision) when conducted by the same student. Both students were able to achieve concordant titres.

> The method does not have high reproducibility. When carried out by different students, results varied.

Further testing and modifications to the method would be required before making a judgement on how close the results are to the true value.

Student 2's results show a higher degree of precision than Student 1.

the principles of	Que	estion 30	D	Increasing the length of the
chromatography, including high	High-performance liquid chromatography (HPLC) is an			column allows for clearer
performance liquid	analytical technique used to separate and identify components			separation of the
chromatography	in a	mixture. An increase in the length of the column would		components, reducing the
(HPLC) and the use of retention times	Α.	increase the peak area.		overlap of peaks. The
and the construction	В.	not affect relative retention times of components.		identity of components can
of a calibration	C.	reduce overall analysis time if the flow rate remains		be more accurately
the concentration of		unchanged.		predicted, particularly
an organic	D.	increase the separation resolution of the components.		when two components
compound in a solution (excluding				have similar retention
features of				times.
instrumentation and operation)				

Section B

```
VCAA Key
Knowledge
```

Question

Answer Guide

The diagram below shows an incomplete energy profile diagram for an exothermic chemical reaction. The Δ H for this reaction was found to be -726 kJ mol⁻¹ at SLC.

		Source: Adapted from https://commons.wikimedia.org/wiki/File:Entalpia_r_exotermica.PNG
molar enthalpy changes measured in kJ mol ⁻¹ and enthalpy changes for mixtures measured in kJ g ⁻¹ , and their representations in energy profile diagrams	Question 1a (2 marks) With reference to the diagram, explain why energy is released as the reaction progresses.	 Answer: On the diagram, the energy of the reactants is higher than the energy of the products. As the reaction progresses, excess energy from the reactants is lost as heat to the surroundings.
		Marking Protocol:
		One mark for each of the above points.
comparison of exothermic and endothermic reactions, with reference to bond making and bond breaking, including enthalpy changes (ΔH) measured in kJ	Question 1b (2 marks) The Δ H for this reaction is -726 kJ mol ⁻¹ at SLC. Explain why exothermic reactions have a negative Δ H value.	 Answer: ΔH is calculated by Hp – Hr. Given that the energy of the reactants is higher than the energy of the products, the value of ΔH will always be negative for an exothermic reaction.
		Marking Protocol:
		One mark for each of the above points.
comparison of exothermic and endothermic reactions, with reference to bond making and bond breaking	Question 1c (1 mark) Explain the exothermic nature of the reaction with reference to bond breaking and bond forming as the	 Answer: The amount of energy released when bonds form in the products is greater than the amount of energy absorbed when bonds in the reactants break.
	reaction progresses.	Marking Protocol:
		One mark for the above point.

comparison of	Question 1d (1 mark)	Answer:
exothermic and endothermic reactions, with reference to bond making and bond breaking, including enthalpy changes (ΔH) measured in kJ, molar enthalpy changes measured in kJ mol ⁻¹ and enthalpy changes for mixtures measured in kJ g ⁻¹ , and their representations in	The activation energy for the reaction is +100 kJ mol ⁻¹ . Complete the energy profile by sketching a curve on the diagram to show the magnitude of the activation energy.	• (r) / (r) Hr Hr Hr Hr Hr Hr Hr Hr Hr Hr
energy profile diagrams		Marking Protocol: One mark for the above point. Note: The activation energy should be approximately $1/8^{th}$ the height of the Δ H. While students are not expected to draw to scale, an attempt should be made to sketch an activation energy with a magnitude relative to Δ H.
combustion (complete	Question 10 (2 marks)	Answer
and incomplete) reactions of fuels as exothermic reactions: the writing of balanced thermochemical equations, including states, for the complete and incomplete combustion	Question Ie (3 marks) Write the thermochemical equation for the complete combustion of liquid methanol at SLC.	Answer: • $CH_3OH(I) + 3/2O_2(g) \rightarrow CO_2(g) + 2H_2O(I) \Delta H = -726 \text{ kJ}$ OR • $2CH_3OH(I) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(I) \Delta H = -1452 \text{ kJ}$ Marking Protocol: Three marks for either of the above points (either can be accepted but take note of ΔH), including: One mark for correct states (liquid methanol and water should be liquid at SLC). One mark for the correct ΔH including units. One mark for a correctly balanced equation.
Including mass-mass, mass-volume and volume-volume stoichiometry, to determine heat energy released, reactant and product amounts and net volume or mass of major greenhouse gases (CO ₂ , CH ₄ and H ₂ O), limited to standard laboratory conditions (SLC)	Question 1f (3 marks) Calculate the volume of CO ₂ released into the atmosphere if 1.00 L of pure methanol undergoes complete combustion in excess oxygen at SLC. The density of methanol is 0.791 g mL ⁻¹ .	Answer: • $m(CH_3OH) = 0.791 \times 1000 = 791 \text{ g}$ • $n(CH_3OH) = 791/(12.0 + 3.0 + 16.0 + 1.0)$ = 24.7 mol $n(CO_2) = n(CH_3OH)$ = 24.7 mol • $V = n \times Vm$ = 24.7 x 24.8 = 613 L correct to 3 significant figures
		Marking Protocol:
		One mark for the correct calculation of methanol.
		One mark for the correct calculation of mole of Carbon dioXide.
		Note: Significant figures must be correct for the third mark.

In an alkaline battery, zinc powder reacts at the anode and manganese dioxide powder reacts at the cathode. Potassium hydroxide is used as the electrolyte. The diagram below shows the setup of the cell.

factors affecting the frequency and success of reactant particle collisions and the rate of a chemical reaction in open and closed systems, including temperature, surface area, concentration, gas pressures, presence of a catalyst, activation energy and orientation

Question 2a (2 marks) Explain why the solid reactants are present in powdered form.

Answer:

- Crushing a solid increases its surface area.
- The increased surface area allows for a faster rate of reaction at the electrodes/increased efficiency.

Marking Protocol:

One mark for each of the above points.

The reaction occurring at the cathode during discharge is: $2MnO_2(s) + H_2O(l) + 2e^- \rightarrow Mn_2O_3(s) + 2OH^-(aq)$

deducing overall	Question 2bi (2 marks)	Answer:
equations from redox	Use oxidation numbers to	• Mn in MnO_2 is +4
determining maximum	show that manganese	Mn in Mn_2O_3 is +3
cell voltage under standard conditions redox reactions as simultaneous oxidation	undergoes reduction during the reaction.	• A decrease in oxidation number indicates reduction has taken place.
and reduction		Marking Protocol:
of oxidation numbers		One mark for each of the above points.
to identify the reducing agent, oxidising agent		
and conjugate redox		
pairs		

deducing overall equations from redox half-equations and for determining maximum cell voltage under standard conditions redox reactions as simultaneous oxidation and reduction processes, and the use of oxidation numbers to identify the reducing agent, oxidising agent and conjugate redox pairs

Question 2bii (1 mark)AWrite the balf cell equation

Write the half-cell equation for the reaction occurring at the anode during discharge, where Zn(s) is oxidised to ZnO(s).

Answer:

• $Zn(s) + 2OH^{-}(aq) \rightarrow ZnO(s) + H_2O(l) + 2e^{-1}$

Marking Protocol:

One mark for the above point.

deducing overall equations from redox half-equations and for determining maximum cell voltage under standard conditions

redox reactions as simultaneous oxidation and reduction processes, and the use of oxidation numbers to identify the reducing agent, oxidising agent and conjugate redox

pairs

Question 2biii (1 mark) Write the overall equation

for the alkaline battery during discharge.

Answer:

• $Zn(s) + 2MnO_2(s) \rightarrow ZnO(s) + Mn_2O_3(s)$

Marking Protocol: One mark for the above point.

the common design features and general operating principles of non-rechargeable (primary) galvanic cells converting chemical energy into electrical energy

Question 2c (3 marks) Battery technology has improved greatly over the past few years with respect to energy output, charge time and safety. Many of these improvements have been in the development of battery technology for Electric Vehicles (EVs). Compare the energy efficiency of a battery designed for an EV with a traditional petrol combustion engine.

Answer:

- Batteries are more efficient than petrol combustion engines.
- Batteries involve only one transformation of energy, from chemical to electrical. This minimises energy loss to the surroundings.
- On the other hand, combustion engines involve several transformations of energy. More energy is lost to the surroundings through each transformation.

Marking Protocol:

One mark for each of the above points.

the common design
features and general
operating principles of
fuel cells, including the
use of porous
electrodes for gaseous
reactants to increase
cell efficiency

Question 2d (1 mark) Hydrogen fuel cells offer another possibility for electricity generation in EVs. Explain why fuel cells are usually designed with porous electrodes.

Answer:

• To increase the surface area of the electrode for the oxidation and reduction of gaseous reactants, increasing efficiency (or rate of reaction).

Marking Protocol: One mark for the above point.

contemporary	Question 2e (2 marks)	Answer:
responses to challenaes and the role	State one advantage and	Advantages
of innovation in the design of fuel cells to meet society's energy needs	one disadvantage of using hydrogen fuel cell technology to power EVs instead of batteries.	 Hydrogen is energy dense/low mass so it can improve the range of the car before refuelling compared to a battery range. Short refuelling time compared to recharging a battery. Can be used in the commercial transport industry for long-haul travel due to its increased range. Hydrogen fuel can be produced sustainably with solar power resulting in a zero-emissions fuel source.
		Disadvantages
		 The current infrastructure is set up for battery recharging stations, not hydrogen refuelling.
		 Hydrogen storage tanks take up space and add mass to the vehicle. These are not necessary for battery-powered cars.
		• The production of hydrogen requires the input of energy – which may involve the use of fossil fuels to generate, which is not sustainable.
		Marking Protocol:
		One mark for any of the above points (one advantage and one
		disadvantage), to a maximum of two.

Almonds are considered a nutritious food option with many health benefits, including lowering blood sugar and cholesterol levels. They contain healthy fats, protein, fibre and a range of vitamins and minerals. They are also an excellent source of energy for the body.

The information table below shows some of the nutrient data for raw almonds per 100 g.

	per 100 g
Total Protein (g)	19.7
Total Fat (g)	50.5
Total Carbohydrate (g)	5.4

energy from fuels and food: comparison and calculations of energy values of foods containing carbohydrates, proteins and fats and	Question 3a (2 marks) Use the data in the table to calculate the energy content of almonds in kJ g ⁻¹ .	Answer: • Protein 19.7 x 17 = 334.9 kJ Carbohydrate 5.4 x 16 = 86.4 kJ Fat 50.5 x 37 = 1868.5 kJ Total in 100 g = 2289.8 kJ
oils		• 2289.8 / 100 = 23 kJ g ⁻¹
		Marking Protocol: One mark for each of the above points.

A basic calorimeter was set up in a school laboratory to determine the energy content of almonds, as shown in the diagram below.

		Source: https://www.education.com/science-fair/article/how-much-potential-energy-do-different/
the use of specific heat	Question 3b (2 marks)	Answer:
approximate the	One small almond, with a	• $E = m x c x \Delta T$
quantity of heat	mass of 0.950 g, underwent	= 100 x 4.18 x 11.3
energy released during	complete combustion in the	= 4723.4 J
known mass of fuel	calorimeter. 100 g of water	$= 4.72 \ kJ$
and food	in the suspended cup	
	showed an increase in	• Energy content
	temperature of 11.3°C after	= 4.72/0.950
	combustion.	$= 4.97 kJ g^{-1}$
	Calculate the energy content	
	of almonds in kJ g^{-1} .	Marking Protocol:
	<u> </u>	One mark for each of the above points.
the principles of	Question 3c (2 marks)	Answer:
solution calorimetry	Compare your answers for	• The data calculation shows a much higher energy content of
the effects of heat loss	Questions 3a and 3b. State	almonds than the experimental calculation.
	one likely reason for the	• This could be because:
	, difference in calculated	- heat was lost to the environment
	values.	- there was no lid on the calorimeter to tran heat
		- the can absorbed some of the heat
		- there was actually more water in the can than 100 a
		- there was incomplete combustion of the almond
		- the holes did not provide enough oxygen for complete
		combustion
		- the sample of almond did not contain the average amount
		of nutrients as stated in the data table
		- (or any other valid reason why the calculated value is
		- (or any other valid reason why the calculated value is
		Marking Protocol:
		One mark for each of the above points. A comparison of values
		and a valid reason is required
		Note: Watch for consequential marks if students calculated an
		answer to Question 3b to be higher than 3a. Accent any logical
		reason for why results might be higher a g, the thermometer
		was touching the side of the cap, or that there was less than 100
		a water in the con

the principles of solution calorimetry, including determination of	Question 3d (2 marks) Calorimeters can be calibrated to improve	 Answer: Supply a known amount of energy to the water in the suspended can.
calibration factor	accuracy. Describe how this simple calorimeter could be calibrated before being used in an investigation.	• Determine the calibration factor by dividing the energy provided to the water by the change in temperature of the water during calibration (J \mathcal{C}^{1}).
		Marking Protocol:
		One mark for each of the above points.
the accuracy,	Question 3e (2 marks)	Answer:
repeatability,	Explain why calibrated	 Calibration determines the heat capacity of the specific
reproducibility,	calorimeters are more	calorimeter being used in an investigation, taking into account
of measurements	accurate than non-	heat loss that may be occurring throughout the process.
	calibrated calorimeters.	• This brings the experimental value closer to the true value.
		Marking Protocol:
		One mark for each of the above points.
combustion (complete	Question 3f (1 mark)	Answer:
reactions of fuels as	State the main purpose of	ullet The holes allow oxygen (reactant) to flow into the calorimeter
exothermic reactions	the holes in the bottom of	to ensure complete combustion.
	the calorimeter.	
		Marking Protocol:
		One mark for the above point.

The Haber process is used to produce ammonia from hydrogen gas and nitrogen gas. The equation for the reaction is shown below.

$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \quad \Delta H = -92.4kJ$

A summary of operating conditions and processes is shown below.

Condition/Process	Haber Cell
Temperature	High
Pressure	Moderately high
Catalyst	Yes
Recycling of unreacted gases	Yes

the distinction between reversible and irreversible reactions, and between rate and extent of a reaction	Question 4ai (2 marks) Explain the effect of high pressure on the rate of production of ammonia.	 Answer: There are more particles per unit area, resulting in an increase in the frequency of particle collision. An increase in the number of successful collisions increases the
factors affecting the frequency and success		rate of reaction.
of reactant particle		Marking Protocol:
connsions and the rate of a chemical reaction in open and closed systems, including temperature, surface area, concentration, gas pressures, presence of a catalyst, activation energy and orientation		One mark for each of the above points.
the change in position of equilibrium that can occur when changes in temperature or species or volume (concentration or pressure) are applied to a system at equilibrium		

between reversible and irreversible reactions, and between rate and extent of a reaction factors affecting the frequency and success	Explain the effect of low temperatures on the yield of ammonia.	 The reaction is exothermic so a decrease in temperature favours the forward reaction and therefore the yield of ammonia increases. The system opposes the change by releasing heat through the exothermic pathway (forward reaction).
of reactant particle collisions and the rate of a chemical reaction in open and closed systems, including temperature, surface area, concentration, gas pressures, presence of a catalyst, activation energy and orientation		Marking Protocol: One mark for each of the above points.
the change in position of equilibrium that can occur when changes in temperature or species or volume (concentration or pressure) are applied to a system at equilibrium		
responses to the	Question 4bi (1 mark)	Answer:
conflict between optimal rate and temperature considerations in producing equilibrium reaction products, with reference to the green chemistry principles of catalysis and designing	Manufacturers of ammonia must compromise on the operating conditions and processes to balance the rate, yield and cost of production.	 If the temperature is too low, the rate of reaction will be so slow that very little ammonia is produced in a timely manner. OR The specific catalyst used in the Haber process requires a higher temperature to be functional.
for energy efficiency		Marking Protocol:
	State one reason why temperature is set at a moderately high level, rather than low.	One mark for either of the above points.
responses to the	Ouestion 4bii (1 mark)	Answer:
conflict between optimal rate and temperature considerations in	Explain why recycling of the unreacted gases leads to a higher yield.	 Constant input of reactant gases favours the forward reaction, increasing yield.
producing equilibrium reaction products, with reference to the green chemistry principles of catalysis and designing		Marking Protocol: One mark for the above point.

Answer:

the distinction

Question 4aii (2 marks)

the role of catalysts in increasing the rate of specific reactions, with reference to alternative reaction pathways of lower activation energies Quest Descr cataly with r temper opera

responses to the conflict between optimal rate and temperature considerations in producing equilibrium reaction products, Question 4c (2 marks) Describe the role of the catalyst in the Haber process, with reference to the temperature stated in the operating conditions table.

Answer:

- The catalyst increases the rate of reaction by providing a reaction pathway with lower activation energy.
- The temperature can be kept lower to help with cost and poor yield.

Marking Protocol:

One mark for each of the above points.

calculations involving equilibrium expressions (including units) for a closed homogeneous equilibrium system and the dependence of the equilibrium constant (K) value on the system temperature and the equation used to represent the reaction Question 4d (4 marks) 30.0 mol of N₂ gas and 90.0 mol of H₂ gas are added to a 10.0 L tank at a particular temperature and pressure. At equilibrium, 10.0 mol of ammonia, NH₃, is present. Calculate the equilibrium constant, K, for the reaction under these conditions.

Answer:

Answer:			
Equation	N ₂ (g) +	3H₂(g) ≓	2NH₃(g)
1	30.0 mol	90.0 mol	0.00 mol
С	-X	-3x	+2x
Е	25.0 mol	75.0 mol	10.0 mol
$m \circ l l^{-1}$	25.0/10.0	75.0/10.0	10.0/10.0
MOI L	= 2.50 M	= 7.50 M	= 1.00 M

 $K = [NH_3]^2 / [N_2][H_2]^3$ = 1.00² / 2.50 x 7.50³ = 9.48 x 10⁻⁴ M⁻²

OR (Students may also complete the calculations without an ICE table)

n(NH₃) produced = 10.0 mol c(NH₃) at equilibrium = 10.0/10.0 = 1.00 M

 $n(N_2)$ reacting (stoichiometry) = 10.0/2 = 5.0 mol $n(N_2)$ at equilibrium = 30.0 - 5.0 = 25.0 mol $c(N_2)$ at equilibrium = 25.0/10.0 = 2.50 M

 $n(H_2)$ reacting = $10.0 \times 3/2 = 15.0 \text{ mol}$ $n(H_2)$ at equilibrium = 90.0 - 15.0 = 75.0 mol $c(H_2)$ at equilibrium = 75.0/10.0 = 7.50 M

 $K = [NH_3]^2 / [N_2][H_2]^3$ = 1.00² / 2.50 x 7.50³ = 9.48 x 10⁻⁴ M⁻²

Marking Protocol:

One mark for all three correct equilibrium mole calculations. One mark for all three conversions to molar concentration shown. One mark for correct equilibrium expression. One mark for correct calculation of the equilibrium constant with correct units. Note: Award consequential marks for correct molar concentration conversions and/or use of the equilibrium expression with incorrect values. I is 'Initial', C is 'Change' and E is 'Equilibrium'.

responses to the	Question 4e (2 marks)	Answer:
conflict between optimal rate and temperature	State two ways the processes and operating conditions	 Unreacted gases are recycled, reducing waste and improving efficiency.
considerations in producing equilibrium reaction products, with reference to the green chemistry principles of catalysis and designing for energy efficiency	associated with the industrial production of ammonia are	• The catalyst reduces the amount of energy required for a fast reaction rate.
	designed to meet the green chemistry principle of 'designing for energy efficiency'.	 Ammonia production is exothermic – the heat generated can be recycled to other processes. Temperatures are kept moderately high, instead of high, reducing the overall energy consumption.
		Marking Protocol:
		One mark for any of the above points, to a maximum of two.

The table below compares some of the common properties and structural features of two organic compounds, propan-1-ol and propanoic acid.

Property/Structure at SLC	propan-1-ol	propanoic acid
Molecular formula	C ₃ H ₈ O	C ₃ H ₆ O ₂
Boiling point	97.2 °C	141.1 °C
Flash point	23 °C	53 °C

molecular, structural	Question 5a	(2 marks)	Answer:	
and semi-structural (condensed) formulas	Draw the full	, structural	•	
and skeletal structures	formulas of p	propan-1-ol and	propan-1-ol	propanoic acid
of alkanes (including	propanoic ac	id into the boxes	Source: https://commons.wikimedia.org/wiki/File:Propanol_flat_structure.png	Source: Propanoic Acid Formula & Structure (purdue.edu)
benzene, haloalkanes, primary amines,	below.			
primary amides, alcohols (primary, secondary and tertiary), aldehydes,	propan-1-ol	propanoic acid	н-с-с-с-о-н ннн	
ketones, carboxylic acids and non- branched esters			Marking Protocol: One mark for the structural f should be shown.	ormula of propan-1-ol – all bonds

One mark for the structural formula of propanoic acid – all bonds should be shown.

trends in physical properties within homologous series (boiling point and melting point, viscosity), with reference to structure and bonding	Question 5b (2 marks) Explain why the boiling point of propanoic acid is higher than the boiling point of propan-1-ol.	 Answer: There are stronger intermolecular bonds between propanoic acid molecules than between propan-1-ol molecules. These require more energy to break, so the boiling point is higher.
		Marking Protocol:
		One mark for each of the above points.
the health, safety and ethical guidelines relevant to the selected scientific investigation	Question 5c (2 marks) The 'flash point' is the lowest temperature of a liquid at which the vapours forming above a substance can ignite in the presence of an ignition	 Answer: The flash point of propan-1-ol is below standard laboratory conditions/room temperature. Therefore, any source of ignition could cause the vapours to ignite.
	source. Use the data to	Marking Protocol:
	explain why a Safety Data	One mark for each of the above points.
	Sheet for propan-1-ol lists	
	'Use only non-sparking tools'	
	as a precautionary measure.	

Propanoic acid can be synthesised in a laboratory from propane, a constituent of crude oil. The reaction pathway is shown below.

of Pure and Applied In the box provided on the • NaOH chemistry (IUPAC) of the ionic species that acts Marking Protocol: organic compounds up of the ionic species that acts Marking Protocol: ar Reagent B. One mark for the above point. groups for a molecule, Inite box provided on the • NaOH limited to non-cyclic as Reagent B. One mark for the above point. holokanes, primary and tertiary), and tertiary), aldehydes, ketones, carboxy file acids and on-branched esters organic reactions and paplications and paplications and principles of laboratory and puty of consumer products, including and puty of consumer products, including and puty of consumer and puty of consumer products, including and puty of consumer and puty of consumer products, including and puty of consumer and puty of consumer and puty of consumer and puty of consumer products, including and puty of consumer and puty of consumer products, including and puty of consumer and brow of consumer products, including and puty	the International Union	Question 5dii (1 mark)	Answer:	
 Chemistry (10/AC) diagram, write the formula of the ionic species that acts as Reagent B. Marking Protocol: One mark for the above point. 	of Pure and Applied	In the box provided on the	● NaOH	
 arking and comparison of the ionic species that acts of the ionic species that acts as Reagent B. One mark for the above point. as Reagent B. One mark for the above point. 	Chemistry (IUPAC)	diagram write the formula		
determination and principles of laboratory and putty (specific enzymes nat required): applications and principles of laboratory and point applications and principles of laboratory and point applications and principles of laboratory and point applications and principles of laboratory and point applications and principles of laboratory and point and point and point applications and principles of laboratory and point and poin	organic compounds up			
than two functional groups for a molecule, limited to non-cyclic hydrocarbos, haloalkanes, primary amines, alcohols (primary, secondary and tertiary), aldehydes, ketones, carboxylic acids and non-branched esters organic reactions and pathways, including equations, reactants, products, reactants products (specific enzymes not required): applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and	to C8, with no more	of the lonic species that acts	Marking Protocol:	
groups for a molecule, limited to non-cyclic hydrocarbons, haloalkanes, primary amines, alcohols (primary, secondary and tertiary), aldehydes, ketones, corboxylic acids and non-branched esters organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required): applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and	than two functional	as Reagent B.	One mark for the above point.	
<pre>limited to non-cyclic hydrocarbons, haloalkanes, primary amines, alcohols (primary, secondary and tertiary), aldehydes, ketones, carboxylic acids and non-branched esters organic reactions and pathways, including equutions, reactants, products, reaction conditions and catalysts (specific catalysts (s</pre>	groups for a molecule,			
hydrocarbons, haladkanes, primary amines, alcohols (primary, secondary and tertiary), aldehydes, ketones, carboxylic acids and non-branched esters organic reactions and pathways, including equations, reactants, products, reaction conditions and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and	limited to non-cyclic			
halaalkanes, primary amines, alcohols (primary, secondary and tertinary), aldehydes, ketones, carbaxylic acids and non-branched esters organic reactions and pathways, including equations, reactants, products, reaction conditions and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and	hydrocarbons,			
amines, alcohols (primary, secondary and tertiary), and tertiary,	haloalkanes, primary			
<pre>(primary, secondary and tertiary), aldehydes, ketones, carboxylic acids and on-branched esters organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required): applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and</pre>	amines, alcohols			
and tertary), aldehydes, ketones, carboxylic acids and non-branched esters organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required): applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and	(primary, secondary			
alaenyaes, ketones, carboxylic acids and non-branched esters organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required): applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and	and tertiary),			
carboxite actions and non-branched esters organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required): applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and	alaenyaes, ketones,			
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required): applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and	non-branched esters			
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required): applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and	non branchea coters			
pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required): applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and	organic reactions and			
equations, reactants, products, reaction conditions and catalysts (specific enzymes not required): 	pathways, including			
products, reaction conditions and catalysts (specific enzymes not required): 	equations, reactants,			
conditions and catalysts (specific enzymes not required): applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and	products, reaction			
catalysts (specific enzymes not required): applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and	conditions and			
applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and	catalysts (specific			
applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and	enzymes not required).			
principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and	applications and			
analysis techniques in verifying components and purity of consumer products, including melting point determination and	principles of laboratory			
verifying components and purity of consumer products, including melting point determination and	analysis techniques in			
and purity of consumer products, including melting point determination and	verifying components			
products, including melting point determination and	and purity of consumer			
melting point determination and	products, including			
determination and	melting point			
	determination and			
fractional)	fractional)			

the International Union of Pure and Applied Chemistry (IUPAC) systematic naming of organic compounds up to C8, with no more than two functional groups for a molecule, limited to non-cyclic hydrocarbons, haloalkanes, primary amines, alcohols (primary, secondary and tertiary), aldehydes, ketones, carboxylic acids and non-branched esters

organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required):

applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and distillation (simple and fractional) Answer:

Question 5diii (2 marks)

to the production of a

significant amount of

propanoic acid.

The reaction pathway leads

propan-2-ol. Explain why this

further synthesis to produce

isomer does not undergo

- Carbon forms 4 bonds with other atoms in a molecule.
- The carboxyl group does not form on a central carbon atom as it would require carbon to form 5 bonds.

Marking Protocol:

One mark for each of the above points.

the International Union of Pure and Applied Chemistry (IUPAC) systematic naming of organic compounds up to C8, with no more than two functional groups for a molecule, limited to non-cyclic hydrocarbons, haloalkanes, primary amines, alcohols (primary, secondary and tertiary), aldehydes, ketones, carboxylic acids and non-branched esters

organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required):

applications and principles of laboratory analysis techniques in verifying components and purity of consumer products, including melting point determination and distillation (simple and fractional)

Question 5div (1 mark)

Propan-1-ol and propan-2-ol have similar boiling points. Explain how fractional distillation could be used to separate the two isomers.

Answer:

• Fractional distillation involves multiple distillation and condensation cycles, resulting in more complete separation/purification of components with similar boiling points.

Marking Protocol:

One mark for the above point.

The diagram below shows the reaction pathway for the production of Compound D.

organic reactions and	Question 5ei (1 mark)	Answer:
pathways, including	State the name of Reaction	 Oxidation, condensation or esterification.
products. reaction	Type C.	
conditions and	, ,	Marking Protocol:
catalysts (specific		
enzymes not required)		One mark for the above point.
the esterification		
between an alcohol		
ana a carboxylic acia		
calculations of		
percentage yield and		
atom economy of		
single-step or overall		
reaction pathways,		
and the advantages for		
society and for industry		
of developing chemical		
atom economy		
,		
organic reactions and	Question 5eii (1 mark)	Answer:
organic reactions and pathways, including	Question 5eii (1 mark)	Answer:
organic reactions and pathways, including equations, reactants,	Question 5eii (1 mark) Write the IUPAC name of the	Answer: • Propyl propanoate.
organic reactions and pathways, including equations, reactants, products, reaction	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction,	Answer: • Propyl propanoate.
organic reactions and pathways, including equations, reactants, products, reaction conditions and catabute (coccific	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction, Compound D, in the box	Answer: • Propyl propanoate. Marking Protocol:
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required)	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction, Compound D, in the box provided on the diagram.	Answer: • Propyl propanoate. Marking Protocol: One mark for the above point.
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required) the esterification	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction, Compound D, in the box provided on the diagram.	 Answer: Propyl propanoate. Marking Protocol: One mark for the above point.
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required) the esterification between an alcohol	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction, Compound D, in the box provided on the diagram.	 Answer: Propyl propanoate. Marking Protocol: One mark for the above point.
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required) the esterification between an alcohol and a carboxylic acid	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction, Compound D, in the box provided on the diagram.	Answer: • <i>Propyl propanoate.</i> Marking Protocol: One mark for the above point.
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required) the esterification between an alcohol and a carboxylic acid	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction, Compound D, in the box provided on the diagram.	 Answer: Propyl propanoate. Marking Protocol: One mark for the above point.
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required) the esterification between an alcohol and a carboxylic acid calculations of parcentage yield and	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction, Compound D, in the box provided on the diagram.	 Answer: Propyl propanoate. Marking Protocol: One mark for the above point.
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required) the esterification between an alcohol and a carboxylic acid calculations of percentage yield and atom economy of	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction, Compound D, in the box provided on the diagram.	 Answer: Propyl propanoate. Marking Protocol: One mark for the above point.
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required) the esterification between an alcohol and a carboxylic acid calculations of percentage yield and atom economy of sinale-step or overall	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction, Compound D, in the box provided on the diagram.	 Answer: Propyl propanoate. Marking Protocol: One mark for the above point.
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required) the esterification between an alcohol and a carboxylic acid calculations of percentage yield and atom economy of single-step or overall reaction pathways,	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction, Compound D, in the box provided on the diagram.	 Answer: Propyl propanoate. Marking Protocol: One mark for the above point.
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required) the esterification between an alcohol and a carboxylic acid calculations of percentage yield and atom economy of single-step or overall reaction pathways, and the advantages	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction, Compound D, in the box provided on the diagram.	 Answer: Propyl propanoate. Marking Protocol: One mark for the above point.
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required) the esterification between an alcohol and a carboxylic acid calculations of percentage yield and atom economy of single-step or overall reaction pathways, and the advantages for society and for	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction, Compound D, in the box provided on the diagram.	Answer: • Propyl propanoate. Marking Protocol: One mark for the above point.
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required) the esterification between an alcohol and a carboxylic acid calculations of percentage yield and atom economy of single-step or overall reaction pathways, and the advantages for society and for industry of developing	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction, Compound D, in the box provided on the diagram.	Answer: • Propyl propanoate. Marking Protocol: One mark for the above point.
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required) the esterification between an alcohol and a carboxylic acid calculations of percentage yield and atom economy of single-step or overall reaction pathways, and the advantages for society and for industry of developing chemical processes	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction, Compound D, in the box provided on the diagram.	 Answer: Propyl propanoate. Marking Protocol: One mark for the above point.
organic reactions and pathways, including equations, reactants, products, reaction conditions and catalysts (specific enzymes not required) the esterification between an alcohol and a carboxylic acid calculations of percentage yield and atom economy of single-step or overall reaction pathways, and the advantages for society and for industry of developing chemical processes with a high atom	Question 5eii (1 mark) Write the IUPAC name of the product of this reaction, Compound D, in the box provided on the diagram.	Answer: • Propyl propanoate. Marking Protocol: One mark for the above point.

organic reactions and	Question 5eiii (2 marks)	Answer:
pathways, including	Calculate the atom economy	 Molar masses of reactants and products
products, reaction	of Reaction Type C to produce	$M(propan-1-ol) = 60.0 \text{ g mol}^{-1}$
conditions and	Compound D.	$M(propanoic acid) = 74.0 \ a \ mol^{-1}$
catalysts (specific		$M(propyl propanoate = 116.0 \text{ g mol}^{-1}$
the esterification		
between an alcohol		• M(Compound D)/M(All reactants) x 100
and a carboxylic acid		$= 116/(60 + 74) \times 100$
calculations of		
percentage vield and		= 86.6%
atom economy of		
single-step or overall		Marking Protocol:
reaction pathways,		One mark for each of the above points.
and the advantages		
for society and for		
chemical processes		
with a high atom		
economy		

The diagram below shows the basic operation of a PEM electrolyser.

the common design features and general operating principles of commercial electrolytic cells (including, where practicable, the removal of products as they form), and the selection of suitable electrode materials, the electrolyte (including its state)

Question 6a (2 marks)

Other than allowing the passage of hydrogen ions from the anode to the cathode, state two purposes of the membrane in the electrolyser.

Answer:

- Separation of the product gases H₂ and O₂ that would spontaneously react if they came in contact.
- Completion of the internal circuit.
- Prevention of the direct flow of electrons/direct reaction of reactants.

Source: https://commons.wikimedia.org/wiki/File:PEMelectrolysis.jpg#/media/File:PEMelectrolysis.jpg

Marking Protocol:

One mark for any of the above points, to a maximum of two.

the writing of balanced	Ouestion 6b (1 mark)	Answer:
equations (with states)	Write the half equation for	• $2H^{+} \pm 2e^{-} \rightarrow H_{2}(\alpha)$
for the reactions	the reaction occurring at the	• $2\pi + 2e - \pi_2(g)$
and cathode and the	the reaction occurring at the	Maulta - Ducha
overall redox reaction	cathode while the cell is in	
for the cell	operation.	One mark for the above point.
the role of innovation	Question 6c (1 mark)	Answer:
in designing cells to meet society's energy	Green chemistry principles	 The energy for the electrolysis of water can be obtained from
needs in terms of	require new technologies to	renewable biofuels or solar/wind generators, reducing the
producing 'green'	be developed with the use of	need for fossil fuels.
hydrogen (including	renewable feedstocks where	
conditions) using the	possible. Describe how the	Marking Protocol:
following methods:	' PFM electrolyser can	One mark for the above point
polymer electrolyte	produce bydrogen required	
powered by either	as a reactant in hydrogen	
photovoltaic (solar) or	fuel cells, renowably	
wind energy	Tuel cells, renewably.	
the role of innovation	Question 6d (2 marks)	Answer:
meet society's energy	Hydrogen can also be	 Both processes use solar energy/sunlight to directly provide
needs in terms of	produced using a process	the energy for the production of a 'fuel'.
producing 'green'	known as artificial	 Natural photosynthesis uses sunlight to produce glucose ('fuel'
equations in acidic	photosynthesis, with a	for cellular respiration) whereas artificial photosynthesis uses
conditions) using the	photoelectrochemical cell.	sunlight to produce hydrogen (fuel for fuel cells).
following methods:	Compare artificial	
artificial photosynthesis using a	photosynthesis to natural	Marking Protocol:
water oxidation and	photosynthesis, referencing	One mark for each of the above points
proton reduction	one similarity and one	
catalyst system	difference between the two	
	processes.	

The following organic compounds were purified and then used to develop reference data and spectra for the identification of unknown contaminants in consumer products.

he	exane	hex-2-ene	hexan-2-ol	hexanal
the principles of chromatography, including high performance liquid chromatography (HPLC) and the use of retention times	Question 7a (2 marks) A mixture of hexene and hex- 2-ene was purified using high-performance liquid chromatography (HPLC). A non-polar, silica, stationary phase was set up for the		 Answer: Hexane and hexene will be attrated to different extents. The double bond in hex-2-energy forming as many dispersion for as hexane molecules, therefore Rt and will be eluted first. 	racted to the stationary phase molecules prevents them from rces with the stationary phase e hex-2-ene will have a shorter
	components. Explain why these	• two	Marking Protocol:	points
	components can l separated using H	be IPLC.		Jonna.

applications of mass	Question 7bi (1 mark)	Answer:
spectrometry (excluding features of	Identify the fragment,	• $[CH_3CH_2CH_2]^+$
instrumentation and operation) and	producing a peak at m/z 43, that is common to all four	Marking Protocol.
interpretation of	organic compounds.	One mark for the above point
qualitative and	0	
including identification		
of molecular ion peak,		
determination of molecular mass and		
identification of simple		
fragments		
applications of mass	Ouestion 7hii (2 marks)	Δnswer·

applications of mass	Question / Dir (2 marks)	AllSwel.
spectrometry (excluding features of instrumentation and operation) and interpretation of availitative and	The mass spectrum was produced by hexanal. State two reasons why this spectrum could not be that	 Hex-2-ene has a molar mass of 84 g mol⁻¹. The molecular ion peak in this spectrum is too high. Hex-2-ene is unlikely to produce a fragment at m/z 57.
quantitative data,	of hex-2-ene.	Marking Protocol:
including identification of molecular ion peak, determination of molecular mass and identification of simple fragments	of molecular ion peak, determination of molecular mass and identification of simple fragments	One mark for each of the above points.

structural

determination of organic compounds by low resolution carbon-13 nuclear magnetic resonance (¹³C-NMR) spectral analysis, using chemical shift values to deduce the number and nature of different carbon environments **Question 7c** (3 marks) The ¹³C NMR spectrum below was obtained during the analysis of the organic compounds.

Source: https://www.chemicalbook.com/SpectrumEN_110-54-

Identify which of the four molecules produced the ¹³C NMR spectrum. Provide two justifications for your choice.

3 13CNMR.htm

Answer:

• Hexane.

And two justifications:

- The spectrum shows three signals, indicating three unique carbon environments.
- All the other compounds would have produced spectra with 6 signals.
- The chemical shift data suggests the presence of carbon atoms in CH₃ and CH₂ groups, rather than C=C carbons.

Marking Protocol:

One mark for hexane.

One mark for any of the other points, to a maximum of two.

measurement of the degree of unsaturation of compounds using iodine

trends in physical properties within homologous series (boiling point and melting point, viscosity), with reference to structure and bonding Question 7d (2 marks) Laboratory tests can be used to identify and distinguish between organic compounds. Next to each test description below, place a tick in the box of the organic molecule it could be used to identify.

	hex ane	hex -2- ene	hex an- 2- ol	hex ana I
lodine, 12, is added to this compound and the colour changes from brown to colourless				
A test for viscosity shows that this compound has the greatest resistance to pouring				

Answer:

	hexane	hex-2-ene	hexan-2-ol	hexanal
Iodine, I2, is added to this compound and				
the colour changes from brown to		~		
colourless				
A test for viscosity shows that this				
compound has the greatest resistance to			 ✓ 	
pouring				

Marking Protocol:

One mark for each of the ticks placed in the correct position of the table.

Catalase is an enzyme that breaks down hydrogen peroxide into water and oxygen gas.

A student-designed an experiment to determine the optimal temperature for catalase activity. A summary of the method is shown below.

- 1. Set up four water baths at 10°C, 30°C, 50°C and 70°C. Use thermometers to monitor the temperature of each water bath.
- 2. Measure 2.0 mL of 10% hydrogen peroxide solution into four, separate test tubes.
- 3. Place a thermometer in each test tube.
- 4. Put test tube 1 into the 10°C water bath. Wait until the contents of the test tube cool to 10°C.
- 5. Add one catalase tablet to the test tube and immediately start timing. Stop the timer when oxygen gas stops being produced.
- 6. Repeat steps 4 and 5 for the other three test tubes in water baths at 30°C, 50°C and 70°C. Record all times and observations in the results table.

Experimental Results

Water Bath	Time for bubbles	Observations	
Temperature (°C)	to stop (sec)		
10°C	205	Bubbles produced slowly	
30°C	45	Vigorous fizzing	
50°C	95	Bubbles consistently but at a slower rate than at 30°C	
70°C	10	Very few bubbles produced	

enzymes as protein- based catalysts in living systems: primary, secondary, tertiary and quaternary structures and changes in enzyme function in terms of structure and bonding as a result of increased temperature (denaturation), decreased temperature (lowered activity)	Question 8a (1 mark) Suggest why the enzyme in the 10°C water bath produced bubbles of oxygen for the longest period of time.	 Answer: At colder temperatures, enzymes operate at a slower rate due to decreased kinetic energy and fewer particle collisions. Marking Protocol: One mark for the above point.
assumptions and limitations of investigation methodology and/or data generation and/or analysis methods	Question 8b (2 marks) Explain why the 'time for bubbles to stop' data could be misleading at 70°C.	 Answer: The bubbles stopped after 10 seconds, indicating a fast rate of reaction compared with the 10°C trial. However, the observations state that there were very few bubbles produced, suggesting that there was very little catalysis of the hydrogen peroxide. Marking Protocol: One mark for each of the above points.

enzymes as protein-	Question 8c (2 marks)	Answer:
based catalysts in	Based on your understanding	ullet At 50 °C, the rate of reaction is high, but the increased
in enzyme function in	of enzyme function, explain	temperature is enough to start the breakdown of the enzyme,
terms of structure and	why the catalase and	leading to a loss in 3D shape and function.
bonding as a result of	hydrogen peroxide reaction	• At 70 °C, the enzyme is fully denatured and does not catalyse
(denaturation)	lasted for 95 seconds at 50°C	the reaction because the active site/3D shape is lost.
	but only 10 seconds at 70°C.	, ,
		Marking Protocol:
		One mark for each of the above points.

The development and identification of chiral molecules in medicines have been an important part of the drug manufacturing process since Louis Pasteur discovered molecular chirality in the mid-1800s. Over 50% of the medicines in current circulation consist of chiral molecules. Some drugs are unichiral, with only one enantiomer present, and others are racemic mixtures, consisting of both enantiomers.

significance of isomers and the identification of chiral centres (carbon atom surrounded by four different groups) in the effectiveness of medicines

Question 9 (5 marks) Use your understanding of chiral chemistry to explain why chirality has become such a strong focus in the drug development and manufacturing industry. In your response:

- provide a definition of chirality and how chiral molecules are identified,
- explain the significance of chirality in the production of pharmaceutical medicines, and
- describe specific challenges faced by manufacturers of new medicines due to molecule chirality.

Answer:

- Chiral molecules are optical isomers, whose mirror images cannot be superimposed on top of each other.
- Chiral molecules are identified through chiral centres; usually a carbon atom with four different atom groups bonded to it.
- The two enantiomers of a drug can have different biological effects. Sometimes the two enantiomers have different therapeutic effects and sometimes one enantiomer could have a detrimental effect.

The challenges faced by manufacturers could include (require two):

- Increased testing of enantiomer drugs is required to check for biological effects and safety.
- Separation and purification of the enantiomers can be difficult and costly.
- Increased length of time between development and availability to the public.
- Working within government regulations that require single enantiomer drugs due to possible negative side effects.
- New technologies may need to be developed to allow for greater separation and purification of enantiomers, increasing the cost and time required.

Marking Protocol:

One mark for each of the first three points, and one mark for any of the other points, to a maximum of two.

aced

VCE UNITS 3&4 CHEMISTRY

Written Examination

ANSWER SHEET – 2024

Student name:

Use a **PENCIL** for **ALL** entries. For each question, shade the box which indicates your answer.

Marks will **NOT** be deducted for incorrect answers.

NO MARK will be given if more than ONE answer is completed for any question.

If you make a mistake, **ERASE** the incorrect answer – **DO NOT** cross it out.

