CHEMISTRY

Units 3&4 – Written examination

2023 Trial Examination

SOLUTIONS

Question 1 Answer: D Explanation: The second carbon is connected to a CH₃, OH, H and CH₂CH₂CH₃ group. Question 2

SECTION A: Multiple-choice questions (1 mark each)

Explanation:

Answer: C

Fuel cells convert chemical energy into electrical energy, have a continual supply of reactants, and use porous electrodes, but are not rechargeable.

Question 3

Answer: B

Explanation:

Water is a by-product of the reaction, therefore it is a condensation reaction.

© TSSM 2023 Page 1 of 15

Question 4

Answer: D

Explanation:

The balanced equation for the complete combustion of methanol at SLC is $2CH_3OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(l)$ and the energy produced is 2×726 kJ mol⁻¹, which is 1452kJ mol⁻¹.

Question 5

Answer: B

Explanation:

The longest carbon chain is 7 carbons, the highest priority group in the amine group and the methyl group is off the 3^{rd} carbon.

Question 6

Answer: B

Explanation:

There are more molecules in the products, so low pressure would favour the forward reaction, and the forward reaction is endothermic, therefore high temperature would favour the forward reaction.

Question 7

Answer: A

Explanation:

Energy in food sample = $1.2 \times 16 + 0.30 \times 17 + 0.50 \times 37 = 42.8 kJ$ Calibration factor = $\frac{42.8}{15.2} = 2.8 kJ$ °C⁻¹

Question 8

Answer: A

Explanation:

Ethanol is oxidised at the anode, therefore $CH_3CH_2OH(aq) + 12OH^-(aq) \rightarrow 2CO_2(g) + 9H_2O(l) + 12 e^-$

© TSSM 2023 Page 2 of 15

would be produced at the cathode.

Question 9 Answer: A Explanation: Linolenic acid is an omega-6 fatty acid as the first double bond is on the 6th carbon from the end of the molecule. **Question 10** Answer: C *Explanation:* Nickel/zinc = 0.51V, tin(IV)/manganese = 1.33V, silver/nickel = 1.05V and copper/zinc = 1.1V **Question 11** Answer: C Explanation: The structural isomers of C₄H₁₁Cl are 1-chloropentane, 2-chloropentane, 3-chloropentane, 1chloro-2-methylbutane, 1-chloro-3-methylbutane, 2-chloro-3-methylbutane, 2-chloro-2methylbutane, and 1-chloro-2,2-dimethylpropane. **Question 12** Answer: B Explanation: Repeating experiments increases the reliability of the results. **Question 13** Answer: C *Explanation:* Aluminium is in the aqueous state and below water on the electrochemical series, so hydrogen

© TSSM 2023 Page 3 of 15

Question 14

Answer: D

Explanation:

But-2-ene exists in the cis and trans isomers, whereas ethene, propene and propanol do not form enantiomers.

Question 15

Answer: A

Explanation:

To get the required reaction you must halve the first reaction, double the second reaction and reverse the third reaction. $\Delta H = \frac{1}{2} \times -2999 + 2 \times 394 + 570 = 141.5 \text{ kJ mol}^{-1}$

Question 16

Answer: C

Explanation:

The IR spectra shows absorbance at 3300-3500, consistent with N-H, and 1630-1680, consistent with C=O (amides).

Question 17

Answer: A

Explanation:

Propanol will travel through the column quickest and butanoic acid will most strongly adsorb to the stationary phase.

Question 18

Answer: D

Explanation:

 $C(O_2)$ final =0.15M, $C(SO_2)$ final=0.3M, $C(SO_3)$ final=0.1M $Kc = \frac{0.3^2 \times 0.15}{0.1^2} = 1.35M$

© TSSM 2023

Question 19

Answer: B

Explanation:

Fatty acids with the most double bonds are most likely to undergo oxidative rancidity, therefore arachidonic acid is most likely.

Question 20

Answer: C

Explanation:

The mass increase of each electrolyte would be:

$$Ag = \frac{300 \times 4.00}{96500} \times \frac{107.9}{1} = 1.34g$$

$$Pb = \frac{300 \times 4.00}{96500} \times \frac{207.2}{2} = 1.28g$$

$$Hg = \frac{300 \times 4.00}{96500} \times \frac{200.6}{2} = 1.24g$$

$$Cs = \frac{300 \times 4.00}{96500} \times \frac{132.9}{1} = 1.65g$$

Question 21

Answer: D

Explanation:

Calibration increases the precision and accuracy of a measurement; repetition determines the reliability and reduces the effect random errors; repeatability involves repeating the experiment under the same conditions. Being able to read the temperature to two decimal places increases the resolution of the measurements.

Question 22

Answer: A

Explanation:

$$\frac{100}{24.8}$$
 = 4.03 mol of gas $\frac{4.03}{2}$ × 131.3 kJ mol⁻¹ = 265 kJ

© TSSM 2023

Question 23

Answer: A

Explanation:

$$\begin{split} \frac{100}{24.8} &= 4.03 \text{ mol of gas} \\ &\text{Energy from CO} = \frac{4.03}{2} \times \frac{563.4}{2} \text{ kJ mol}^{-1} = 567.9 \text{ kJ} \\ &\text{Energy from H}_2 = \frac{4.03}{2} \times \frac{483.6}{2} \text{ kJ mol}^{-1} = 487.5 \text{ kJ} \\ &\text{Total energy} = 567.9 + 487.5 = 1055 \text{kJ} \end{split}$$

Question 24

Answer: D

Explanation:

Biodiesel contains polar carbon-oxygen bonds, which can form dipole-dipole bonds with water, causing a higher hygroscopicity and they have lower energy content per gram than petrodiesel.

Question 25

Answer: D

Explanation:

Twice as much hydrogen is produced at the cathode than oxygen at the anode. Hydrogen will emit a pop when tested with a splint.

Question 26

Answer: C

Explanation:

Carbohydrates with a greater percentage of amylose have a lower GI.

Question 27

Answer: C

Explanation:

Bromothymol blue has a colour change at a pH of 6.0-7.6 so would be suitable for a titration between a strong acid and a strong base.

© TSSM 2023 Page 6 of 15

Question 28 Answer: D

The greatest separation would be produced by a like stationary phase and an unlike mobile phase.

Question 29

Explanation:

Answer: B

Explanation:

Co-enzymes often bind with the active site, can carry electrons to assist a reaction and are not used in the reaction, but they are not proteins.

Question 30

Answer: A

Explanation:

H₃O⁺(aq) ions are produced in the recharge reaction at the anode, therefore the pH will decrease.

© TSSM 2023 Page 7 of 15

SECTION B: Short-answer questions

Question 1 (11 marks)

a. Energy content = $10.5 \times 37 + 0.7 \times 16 + 20.9 \times 17^*$ =755kJ*

2 marks

b. Vitamin D is a fat-soluble vitamin as is a large molecule mainly non-polar molecule with only one hydroxyl group*. Therefore, it would not be suitable for a person to consume more than one serve of sardines in a day as the vitamin D would not be excreted and would accumulate in the body*.

2 marks

c.

- i. Alpha or 2-amino acids contain a carboxylic acid* and an amine group on the 2nd carbon* 2 mark
- ii. Essential amino acids are amino acids that the body cannot produce from other amino acids*. Therefore, they must be consumed as part of an individual's diet*. 2 marks

d.

i. Linolenic acid.

ii. 2 marks

© TSSM 2023 Page 8 of 15

Question 2

a.
$$C_3H_8(l) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$$
 $\Delta H = -2220 \text{ kJ mol}^{-1}*$ $2C_4H_{10}(l) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(l)$ $\Delta H = -5760 \text{ kJ mol}^{-1}*$

2 marks

b. Energy from propane =
$$\frac{500\times60}{100}$$
 = 300g $\frac{300}{44} \times 2220 = 15136 \text{kJ}^*$ Energy from butane = $\frac{500\times40}{100}$ = 200g $\frac{200}{58} \times 2880 = 9931 \text{kJ}^*$ Total energy = $15136 + 9931 = 25067 \text{kJ}^*$

3 marks

c.
$$n(CO_2)$$
 from propane = $\frac{300}{44} \times 3 = 20.45$ mol and $n(CO_2)$ from propane = $\frac{200}{58} \times 4 = 13.79$ mol* $n(CO_2) = 34.24$ mol * $V(CO_2) = 34.24 \times 24.8 = 849$ L*

3 marks

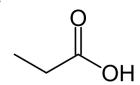
© TSSM 2023 Page 9 of 15

a. $H_3PO_4(aq)$

1 mark

b.

1 mark


c. i.

1 mark

ii.
$$CH_4(g) + Cl_2(g)$$
 → $CH_3Cl(g) + HCl(g)^*$
 $\frac{50.5}{87} \times 100\% = 58.0\%^*$

2 marks

d.

1 mark

e. Step 1

Oxidation: $C_3H_7OH(aq) \rightarrow C_3H_6O(aq) + 2H^+(aq) + 2e^-$

Reduction: $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr_3^{3+}(aq) + 7H_2O(l)*(both equations)$ Full: $3C_3H_7OH(aq) + Cr_2O_7^{2-}(aq) + 8H^+(aq) \rightarrow 3C_3H_6O(aq) + 2Cr_3^{3+}(aq) + 7H_2O(l)*$

 $\overline{\text{Oxidation: C}_3\text{H}_6\text{O(aq)} + \text{H}_2\text{O(l)}} \rightarrow \text{C}_2\text{H}_5\text{COOH(aq)} + 2\text{H}^+(\text{aq)} + 2\text{e}^-$

Reduction: $Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- - 2Cr^{3+}(aq) + 7H_2O(1)*(both equations)$

Full: $3C_3H_6O(aq) + Cr_2O_7^{2-}(aq) + 8H^+(aq) \rightarrow 3C_2H_5COOH(aq) + 2Cr^{3+}(aq) + 2H_2O(1)^*$

4 marks

f.

1 mark

© TSSM 2023 Page 10 of 15

g.

© TSSM 2023 Page 11 of 15

a.

	N ₂	H_2	NH ₃
Initial	$\frac{4}{0.5} = 8M$	$\frac{4}{0.5} = 8M$	0M
Change*	$\frac{5.2}{2} = -2.6M$	$\frac{5.2 \times 3}{2} = -7.8M$	+5.2M
Final*	5.4M	0.2M	5.2M

$$Kc = \frac{5.2^2}{5.4 \times 0.2^3} = 626 M^{-2}*$$

3 marks

b. i. After the container was expanded the rate of the forward reaction decreased* as there were less collisions between N_2 and H_2 as there is more space in the container*.

2 marks

ii.
$$C(N_2) = \frac{5.4}{4} = 1.35M$$
, $C(H_2) = \frac{0.2}{4} = 0.05M$, $C(NH_3) = \frac{5.2}{4} = 1.3M*$
 $Kc = \frac{1.3^2}{1.35 \times 0.05^3} = 10000M^{-2}* (3 S.F.)$ 2 marks

- iii. The reaction quotient is greater than the equilibrium constant*, therefore the reaction will move towards the left side until Q_c is equal to K_c *.
- c. i. High temperature increases the rate of reaction as there are more collisions between reactants with sufficient energy to overcome the activation energy.* High temperature will decrease the equilibrium constant as the reaction is exothermic, the reaction will move to the left side to absorb the energy*.
 2 marks
 - ii. High pressure will increase the rate of reaction as there will be more collisions between reactants, therefore there would be more fruitful collisions*. High pressure will push the position of the equilibrium to the right as there are less molecules on the right, which will reduce the pressure in the vessel*.
 - iii. A catalyst increases the rate of reaction as it reduces the energy required for a fruitful collision, therefore increasing the number of fruitful collisions*. A catalyst does not change the position of equilibrium as it increases the rate of the forward and backward reaction in equal proportions*.
 - iv. High temperatures are favoured to ensure that the rate of production is high to produce ammonia quickly*. The low yield is overcome by reusing the unused reactants to produce more products*.

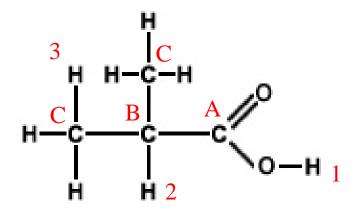
© TSSM 2023 Page 12 of 15

a. i. the small peak at 89 is caused by the presence of an isotope such as carbon-13.

1 mark

ii. $C_5H_{12}O^*$ or $C_4H_8O_2^*$

2 marks


iii. base peak m/z $43 = CH_3CH_2CH_2^+$

1 mark

b. i. The spectra has a broad strong absorbance 2500-3500, indicative of OH acid*, and a strong narrow absorbance band at ~1700, indicative of C=O acid*.

 $\mathbf{ii.} \ C_4H_8O_2$ 1 mark

c. i, ii and iii

3 marks

© TSSM 2023 Page 13 of 15

a. i. anode = O_2 *, cathode = H_2 *

2 mark

- ii. The cotton ball keeps the products of the reaction on each side of the U tube so the electrolyte can be tested.1 mark
- **b.** i. anode: $2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-*}$ cathode: $2H_{2}O(l) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)^{*}$ full equation: $2H_{2}O(l) + 2Cl^{-}(aq) \rightarrow Cl_{2}(g) + H_{2}(g) + 2OH^{-}(aq)^{*}$ 3 marks
 - **ii.** 20% m/v = 200g L⁻¹* $C = \frac{200}{58.5} = 3.4\text{M}*$ 2 marks
 - **iii.** Chloride ions are above water in the electrochemical series under standard conditions (1M solution)*, however when a highly concentrated sodium chloride solution is used the chloride half equation is preferred*.

 2 marks
 - iv. $Q = 10000 \times 60 \times 60 \times 24 = 8.64 \times 10^{8} *$ $n(Cl_2) = \frac{8.64 \times 10^{8}}{96500} \times \frac{1}{2} = 4476.7 \text{ mol}*$ $V(Cl_2) = \frac{4476.7 \times 8.31 \times 673}{250} = 100146L = 100ML*$

3 marks

- **c. i.** calcium chloride is added to the electrolyte to reduce the melting point of the sodium chloride electrolyte.* This reduces the costs required to run the Downs cell.* 2 marks
 - ii. Calcium chloride does not affect the products of the electrolysis reaction as calcium is below sodium on the electrochemical series*. This means that the sodium reaction is preferred even if there is calcium present in the electrolyte.2 marks

© TSSM 2023 Page 14 of 15

a. volume of sodium hydroxide

1 mark

b. possible answers: parallax error reading burette, equipment error in pipette

1 mark

c. rinse burette with NaOH solution* rinse conical flask with deionized water*

2 marks

d. The use of sodium hydroxide as a standard solution for the titration*, means that the accuracy and reliability of the investigation is questionable*. Sodium hydroxide absorbs carbon dioxide and water from the atmosphere, so it can not be used as primary standard solution*. It must be titrated against an acidic primary standard such as hydrochloric acid.*

Question 8

a. Incomplete combustion of octane produces 3206.5kJ mol⁻¹, whereas complete combustion produces 5460kJ mol⁻¹*. Therefore 70% more octane is required to produce the same energy through incomplete combustion, compared to complete combustion*. The complete combustion of octane produces carbon dioxide which contributes to climate change and increased acidity of oceans and rain*. Incomplete combustion produces carbon monoxide, which causes an exothermic reaction with oxygen to produce carbon dioxide, which contributes to the enhanced greenhouse effect and acid rain*.

4 marks

b. Carbon monoxide has adverse health implications as it binds to haemoglobin with a much higher equilibrium constant that oxygen*.

$$Hb(aq) + O_2(g) = HbO_2 (aq)$$
 $K_c \sim 1.2*$
 $Hb(aq) + CO(g) = HbCO (aq)$ $K_c \sim 250*$

To treat carbon monoxide poisoning the patient must breathe in pure oxygen to bind with all available haemoglobin, which pushes the haemoglobin-carbon monoxide equilibrium to the left*.

© TSSM 2023 Page 15 of 15