

STUDENT:	TEACHER:

CSE TEST - OCTOBER 2010

YEAR 11 - CHEMISTRY

Written test 2

Reading time: 15 minutes
Writing time: 1 hour 30 minutes

QUESTION AND ANSWER BOOK

Structure of book

Section	Number of questions	Number of questions to be answered	Number of marks	Suggested times (minutes)
Α	20	20	20	30
В	7	7	55	60
			Total 75	90

- Students are permitted to bring into the test room: pens, pencils, highlighters, erasers, sharpeners, rulers, an approved graphics calculator (memory cleared) and/or one scientific calculator
- Students are NOT permitted to bring into the test room: blank sheets of paper and/or white out liquid/tape.

Materials

- Question and answer book of 18 pages with an accompanying data sheet.
- Detachable answer sheet for multiple choice questions. You may remove this during reading time.

Instructions

- Write your name in the space provided above and on the multiple choice answer sheet.
- All written responses must be in English.

At the end of the test

Place the answer sheet for multiple choice questions inside the front cover of this book.

Students are NOT permitted to bring mobile phones and/or other electronic communication devices into the test room.

SECTION A - Multiple choice questions

Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple choice questions.

Choose the response that is correct or that best answers the question.

A correct answer scores 1, an incorrect answer scores 0. Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Question 1

Which one of the following equations most accurately represents the process of photosynthesis?

A.
$$C_6H_{12}O_6(aq) + 6O_2(g) \xrightarrow{UV \text{ light, Chlorophyll}} 6CO_2(g) + 6H_2O(l)$$

B.
$$6CO_2(g) + 6H_2O(1) \rightarrow C_6H_{12}O_6(ag) + 6O_2(g)$$

C.
$$C_6H_{12}O_6(aq) \rightarrow 2C_2H_5OH(aq) \cdot 2CO_2(g)$$

D.
$$6CO_2(g) + 6H_2O(l) \xrightarrow{UV \text{ light, Chlorophyll}} C_6H_{12}O_6(aq) + 6O_2(g)$$

Question 2

The same amount of heat energy is supplied to each of 100 g of water and 100 g of copper. The effect on the substances would be that

- A. the temperature of both substances would increase by the same amount as they have absorbed the same amount of heat.
- **B.** the temperature of the water would increase more than that of the copper as copper is a better conductor of heat than water.
- **C.** the temperature of the copper would increase more than that of the water as water has a higher specific heat capacity than copper.
- **D.** the temperature of the water would increase more than that of the copper as water has a higher specific heat capacity than copper.

Question 3

Which one of the following processes is most likely to occur when each of the substances hydrogen bromide, HBr, methanol, CH₃OH, sodium nitrate, NaNO₃, zinc carbonate, ZnCO₃ is added to water?

	Insoluble	Dissociates	Ionises	Hydrogen bonds to water
A.	sodium nitrate	hydrogen bromide	methanol	zinc carbonate
В.	zinc carbonate	sodium nitrate	hydrogen bromide	methanol
C.	hydrogen bromide	sodium nitrate	methanol	zinc carbonate
D.	zinc carbonate	hydrogen bromide	sodium nitrate	methanol

Which one of the following is the correct ionic equation derived from the balanced equation

$$Sr(NO_3)_2(aq) + K_2CO_3(aq) \rightarrow 2KNO_3(aq) + SrCO_3(s)$$
?

A.
$$Sr^{2+}(aq) + NO_3^{-}(aq) + 2K^{+}(aq) + CO_3^{2-}(aq) \rightarrow 2KNO_3(aq) + SrCO_3(s)$$

B.
$$2K^{+}(aq) + 2NO_{3}(aq) \rightarrow 2KNO_{3}(aq)$$

C.
$$K^{\dagger}(aq) + NO_3(aq) \rightarrow KNO_3(aq)$$

D.
$$Sr^{2+}(aq) + CO_3^{2-}(aq) \rightarrow SrCO_3(s)$$

Question 5

When shaken, then left to stand, a mixture of oil and water separates into two layers with oil as the upper layer. The best explanation of this is that

- oil is less dense than water and the intermolecular bonds between oil molecules are weaker than A. the intermolecular bonds between oil molecules and water molecules.
- oil is more dense than water and the intermolecular bonds between oil molecules are stronger than В. the intermolecular bonds between oil molecules and water molecules.
- C. oil is less dense than water and the intermolecular bonds between oil molecules are stronger than the intermolecular bonds between oil molecules and water molecules.
- D. oil is more dense than water and the intermolecular bonds between oil molecules are weaker than the intermolecular bonds between oil molecules and water molecules.

Question 6

The solubility of barium carbonate is 0.002 g/100 g at 25°C. This concentration expressed as ppb (parts per billion) is

- $2 \times 10^{4} \text{ ppb.}$ Α.
- $2 \times 10^{6} \text{ ppb.}$ В.
- 2×10^7 ppb. C.
- $2 \times 10^{9} \text{ ppb.}$ D.

Question 7

- 1. $HF(aq) + H_2O(I) \rightarrow H_3O^{\dagger}(aq) + F_{-}(aq)$
- 4. $NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$
- 2. $HCO_3^{-1}(aq) + OH^{-1}(aq) \rightarrow CO3^{2-1}(aq) + H_2O(I)$ 5. $H_3O^{+1}(aq) + SO_3^{-2-1}(aq) \rightarrow HSO_3^{-1}(aq) + H_2O(I)$

3. $O_2(g) + 2H_2(g) \rightarrow 2H_2O(I)$

6. $H_2O_2(aq) \rightarrow H_2O(1) + O_2(q)$

Which of the above equations represent Lowry-BrØnsted acid-base reactions?

- A. 2. 5.
- В. 3. 4. 6.
- C. 1. 2. 3. 4. 5.
- D. 1, 2, 4, 5,

A 0.1 M aqueous solution of hydrochloric acid, HCl, a strong acid, and a 0.2 M aqueous solution of hydrofluoric acid, HF, a weaker acid, are prepared.

- A. The concentration of H₃O⁺ ions in HCl is 0.1 M and in HF is 0.2 M.
- B. The concentration of H₃O⁺ ions in HCl is 0.1 M and in HF is less than 0.2 M.
- **C.** The concentration of H_3O^+ ions in HCl is less than 0.1 M and in HF is 0.2 M.
- **D.** The concentration of H_3O^+ ions in HCl is less than 0.1 M and in HF is less than 0.2 M.

Question 9

An electrochemical cell consists of a Cd²⁺/Cd half cell and an Ag⁺/Ag half cell. When this cell operates which of the following statements is incorrect?

- A. Electrons flow from the silver electrode to the cadmium electrode in the external circuit.
- B. Cadmium metal loses electrons.
- C. Silver ions are the oxidant.
- D. Negative ions flow from the salt bridge into the cadmium half cell and positive ions flow into the silver half cell.

Question 10

In which of the following equations is a chemical species acting as a diprotic acid?

- A. $H_3AsO_4(aq) + 3NaOH(aq) \rightarrow Na_3AsO_4(aq) + 3H_2O(1)$
- B. $HPO_4^{2-}(aq) + OH^{-}(aq) \rightarrow PO_4^{3-}(aq) + H_2O(1)$
- C. $2HCl(aq) + Ca(OH)_2(aq) \rightarrow CaCl_2(aq) + 2H_2O(l)$
- D. $H_2SO_4(aq) + 2KOH(aq) \rightarrow K_2SO_4(aq) + 2H_2O(1)$

Question 11

The pH of a solution of barium hydroxide, Ba(OH)₂, is 12 at 25°C. What is the concentration of barium hydroxide in the solution?

- **A.** 5×10^{-3} M.
- B. 1 x 10⁻² M.
- **C.** 2 M.
- D. 12 M.

Question 12

$$Mg(s) + Sn^{2+}(aq) \rightarrow Mg^{2+}(aq) + Sn(s)$$

The half equations which have been combined to form the redox equation above are

An aqueous solution of 4.81g of hydrated potassium carbonate, K₂CO₃.xH₂O, reacts completely with 24.0 mL of 2.30 M hydrochloric acid. The value of x is closest to

- **A.** 1.5.
- B. 2.
- **C.** 3.
- D. 4.

Question 14

Which of the following atmospheric gases is least likely to increase in concentration in an urban or industrially polluted environment?

- A. Argon.
- B. Carbon dioxide.
- C. Methane.
- D. Ozone.

Question 15

The environment in which an iron bar is least likely to corrode is

- A. the sea bed in a very deep part of the ocean.
- B. a rural area with average rainfall.
- C. an industrial area with low rainfall.
- **D.** the intertidal zone on the sea shore.

Question 16

The following reactions occur in the nitrogen cycle. In which reaction is nitrogen reduced?

- A. $N_2(g) + O_2(g) \rightarrow 2NO(g)$
- B. $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$
- C. $2NO_2(g) + H_2O(I) \rightarrow HNO_2(aq) + HNO_3(aq)$
- **D.** $2NO_2(aq) + O_2(g) \rightarrow 2NO_3(aq)$

Question 17

The particles in a sample of gas at a fixed temperature and in a closed container

- A. all have the same velocity.
- B. travel in straight lines until they collide.
- C. all have the same kinetic energy.
- D. have strong interparticle attractive forces.

Which one of the following is not equivalent to a gas pressure of 1.27 atm?

- A. 1.29 bar.
- B. $1.29 \times 10^2 \text{ kPa}$.
- **C.** 1.29×10^5 Pa.
- **D.** $1.29 \times 10^6 \text{ N m}^{-2}$.

Question 19

10.9 g of a gas occupies a volume of 7.32 L at SLC. The gas is most likely to be

- A. Carbon dioxide.
- B. Helium.
- **C.** Hydrogen chloride.
- **D.** Krypton.

Question 20

Which of the following does not involve the absorption of UV radiation?

- A. The breakdown of CFCs in the stratosphere.
- B. The trapping of atmospheric heat by Greenhouse gases.
- **C.** The formation of photochemical smog.
- D. Photosynthesis.

END OF SECTION A

SECTION B - Short answer questions

Instructions for Section B

Answer all questions in the spaces provided.

To obtain full marks for your responses you should

- give simplified answers with an appropriate number of significant figures to all numerical questions;
 unsimplified answers will not be given full marks.
- show all working in your answers to numerical questions. No credit will be given for an incorrect answer unless it is accompanied by details of the working.
- make sure chemical equations are balanced and that the formulas for individual substances include an indication of state; for example H₂(g); NaCl(s)

Question 1

Use the information in the graphs to explain the properties and behaviour of water.

a. High boiling point of water.

hydrides.	nemicai bonding, the	polling point of water	er compared with the	e otner group 16
	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Exercise the control of the control		· · · · · · · · · · · · · · · · · · ·	ABPLIANT TO THE PROPERTY OF TH	
	***************************************	·		
		PT-07-12-12-12-12-12-12-12-12-12-12-12-12-12-	177.000	

b. Changes of state of water.

The graph on the previous page shows the variation in temperature when heat energy is given to ice initially at -20°C.

Describe the effect on the water molecules at points A and B of this added heat energy.

Α.		
	•	
В.		

c. Changes of water density as the temperature increases.

Explain in terms of chemical bonding the changes in water density shown on the graph from -5°C to 10°C.			
4			

d. Solubility of salts and gases

Identify which curve represents the solubility of a typical salt, and which the solubility of a typical gas. For each explain the shape of the curve.

X	
Reason	
*	
Υ	
Reason	
	2 marks

Total 8 marks

100 mL of a 1.5 M solution of aluminium sulfate, Al ₂ (SO ₄) ₃ , are mixed with 100 solution of potassium sulfate, K ₂ SO ₄ . What is the concentration of sulfate ions solution?	in the resulting
•	
•	
	2 n
Sulfate ions in the combined solution produced in a. are precipitated as barium	
200 mL 3.0 M barium chloride solution.	sunate by additi
i. Write a balanced ionic equation for this reaction.	
i. Write a balanced ionic equation for this reaction.	
i. Write a balanced ionic equation for this reaction.	
i. Write a balanced ionic equation for this reaction.	
i. Write a balanced ionic equation for this reaction.	
	1
i. Write a balanced ionic equation for this reaction. ii. Determine whether the sulfate ions or the barium ions are in excess and by	

		<u></u>
<u></u>	1	mark
i.	In a separate experiment, 5.72 g of potassium sulfate is completely dissolved in 100 mL of water. Calculate the molarity of the potassium sulfate solution.	
_		
_		marl
ii.	60.0 mL of water are added to the potassium sulfate solution. Calculate the molarity after dilution.	
-		
_		
-		1 ma
i	ii. Convert the molarity calculated in c. ii. above to a concentration in % m/v.	
-		

Total 11 marks

	ffect
	Industrial acid rain
— Е	ffect
	2 m
hyd	e process of purifying water may involve the addition of calcium hydroxide, Ca(OH)2, to the waneutralise acidity. 3.0 x 104 L of water with a pH of 4.0 is to be neutralised using calcium droxide. Write an ionic equation for the neutralisation reaction.
hyc	neutralise acidity. 3.0 x 104 L of water with a pH of 4.0 is to be neutralised using calcium droxide.
hyc	droxide.
i.	neutralise acidity. 3.0 x 104 L of water with a pH of 4.0 is to be neutralised using calcium droxide. Write an ionic equation for the neutralisation reaction.
i.	neutralise acidity. 3.0 x 104 L of water with a pH of 4.0 is to be neutralised using calcium droxide.
i.	neutralise acidity. $3.0 \times 104 \text{ L}$ of water with a pH of $4.0 \text{ is to be neutralised using calcium droxide.}$ Write an ionic equation for the neutralisation reaction. 1 n Calculate the number of moles of H_3O^+ ions in the water and hence the number of moles of O
i.	neutralise acidity. $3.0 \times 104 \text{ L}$ of water with a pH of $4.0 \text{ is to be neutralised using calcium droxide.}$ Write an ionic equation for the neutralisation reaction. 1 n Calculate the number of moles of H_3O^+ ions in the water and hence the number of moles of O
i.	neutralise acidity. $3.0 \times 104 \text{ L}$ of water with a pH of $4.0 \text{ is to be neutralised using calcium droxide.}$ Write an ionic equation for the neutralisation reaction. 1 r Calculate the number of moles of H_3O^+ ions in the water and hence the number of moles of O
i.	neutralise acidity. $3.0 \times 104 \text{ L}$ of water with a pH of $4.0 \text{ is to be neutralised using calcium droxide.}$ Write an ionic equation for the neutralisation reaction. 1 r Calculate the number of moles of H_3O^+ ions in the water and hence the number of moles of H_3O^+
i.	neutralise acidity. $3.0 \times 104 \text{ L}$ of water with a pH of $4.0 \text{ is to be neutralised using calcium droxide.}$ Write an ionic equation for the neutralisation reaction. 1 r Calculate the number of moles of H_3O^+ ions in the water and hence the number of moles of O

III.	. Calculate the required mass of calcium hydroxide.			
	•			

2 marks

Total 7 marks

a. The galvanic cell below contains three errors. State and explain these in the space provided below the diagram.

Half Equations $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s) Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$

	Error	Explanation
1.		
	The state of the s	
2.		
3.		

b. State which of the reactions in the table below are redox reactions, and for each redox equation, identify the oxidant.

Reaction	Redox Yes/No	Oxidant
$Ba(NO_3)_2(aq) + H_2SO_4(aq) \rightarrow 2HNO_3(aq) + BaSO_4(s)$		
$2Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$		3
$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$		
NaCl(s) → Na ⁺ (aq) + Cl ⁻ (aq)		

3 marks

Total 9 marks

Question 5

20.0 g of solid copper nitrate decomposes completely on heating producing solid copper oxide, nitrogen dioxide gas and oxygen gas according to the following equation

$$2Cu(NO_3)_2(s) \rightarrow 2CuO(s) + 4NO_2(g) + O_2(g)$$

3.	Calculate the mass of copper oxide formed.	
		2 mark
b	Calculate the total volume of gas formed at a temperature of 60.0°C and 1.10 atm pressure.	
		4

4 marks

Total 6 marks

a.	Either	Write a balanced equation for the laboratory preparation of oxygen or carbon dioxide gas include any catalysts used.
	or	Briefly describe the industrial preparation of a sample of nitrogen from air.
b.	i. Desc	2 marks
		
	THE RESERVE OF THE PERSON OF T	· 2 marks
	ii. Expla	ain why you have chosen this method.
: .	Write a b	alanced equation for each of the following gas preparations.
	i. Nitro	gen(IV)oxide by the reaction of copper metal with concentrated nitric acid. The products are er(II) nitrate solution, nitrogen(IV) oxide gas and water.
	ii. Sulfu sulfal	2 marks r dioxide by the reaction of zinc metal and concentrated sulfuric acid. The products are zinc e solution, sulphur dioxide gas and water.
		2 marks

Total 10 marks

Ozone in the earth's atmosphere has both beneficial and harmful effects.

 Complete the following equations for the reactions by which ozone is formed by filling in the underlined spaces.

$$O_2(g) + \underline{\hspace{1cm}} \Rightarrow 2O(g)$$

$$O(g) + O_2(g) \rightarrow \underline{\hspace{1cm}}$$

Total 4 marks

1 mark

2 marks

END OF SECTION B

END OF QUESTION AND ANSWER BOOK

CSE TEST – OCTOBER 2010 YEAR 11 – CHEMISTRY

Written test 1 Data Sheet

Directions to students

This data sheet is for your reference.

Any writing, notes, drawings or jottings you make on this data sheet will **not** be considered in the marking. You may keep this data sheet.

Physical Constants

Gas constant (R) = $8.31 \, \text{J K}^{-1} \, \text{mol}^{-1}$ Ionic Product for Water (K_W) = $1.00 \, \text{x} \, 10^{-14} \, \text{mol}^2 \, \text{L}^{-2} \, \text{at} \, 298 \, \text{°K}$ Molar Volume (V_m) of an ideal gas at 25 °C and 101.3 kPa (SLC) = $24.5 \, \text{L mol}^{-1}$ Specific Heat Capacity of water = $4.18 \, \text{J g}^{-1} \, \text{C}^{-1}$ Specific Heat Capacity of copper = $0.38 \, \text{J g}^{-1} \, \text{C}^{-1}$ 1 atm = $101.3 \, \text{kPa} = 1.013 \, \text{bar}$ 1 N m⁻² = 1Pa

Activity Series (Electrochemical Series) of Metals

1. Periodic table of the elements

1											,						
2. He 4.0 Halium	Ne 20.1	18 Ar	Argon	36	Ķ	83.58	Condition	, 100 ;	Ae 131.3	Nenon	36	Rn	(222)	Kzdon	20	Uno	
	9 F 19.0 Fluorine	17 23	Chlorine	35	Br	79.9	THE CHARLES	કે મ	126.9	Lodine	85	At	(210)	Ascanna			
	8 O 16.0 Onygen	16 S 30 1	Selfer	34	Se	79.0 Salestines	2	ž, j	127.6	Tellurium	3.4	Po	(209)	Loron	116	Uah	-
	7 N 14.0 Nitrogen	15 P 31.0	Phesphones	33	¥.	74.9 Arzenic		5 5	121.8	Antimony	83	B.	209.0				
	6 C 11.0 Carbon	14 Si 28.1	Silicon	32	Ů,	72.6 Germanian	02	3 5	118.7	B	22	Pb	207.2 Lead		H	Uno	-
	5 B 10.8 Beren	13 41 27.0	Aluminium	31	ر ا	69.7 Cellilli	40	} #	114.8	Lidran	8	=	204.4 Thallium				_
	_			8 1		Zinc Zinc	18	: 3	112.4	Comme	8	H	Marcity	,	112	Cab	_
	symbol of element name of element			21 0	<u></u> 5 8	Copper Copper	17	. H	107.9	SINTER	ø,	Au .07.6	O PIO	III	₩ 80	(272)	-
	79 Au symb 197.0 Gold name			eg ;		Nickel Nickel	16	Pd	106.4	Lanzania	% #	105.1	Platinum	110	ñ	(271) Damstadtiun	
			Comp	Fi C	ָבָּ קָּנְ	Cobalt										(268) Meinemm II	
•	atonne nunber relative atomic mass			26 12 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	55.0	lion	1			j						(277) Hastrium	-
				£ 5	\$10	Manganese	43	범	98.1 Technetium		C A	1867	Rheurium	107	a ?	(264) Belaium	
																(200) Seaborgium	
			Ì			Vanadium				Τ''				105			
			**	:	47.9	Titenium	40	Z.;	91.2 Zircezinm	5	# #	178.5	Hafnium	104	# E	(101) Jutharfordum	
				, 3	44.9	Scandium	39	; بر	Ythrium	1,3	. L	138.9		89			
	Be 9.0 Beryllium	Maryerini	30	ខិ	40.1	Calcium	₩		Stroatium	35.	g g	137.3	Barium	88		Radium	
H LO Hydrogen	Li 6.9 Lifbinas	Na 23.0 Sedium	92	M	39.1	Potassum	£ ;	Z	Rubidian	ī.	చ	132.9	Czesium	£ 62	133	Francium	
		····	щ.			1											

	71 Lu 175.0	tantam-r
	70 V.b 173.0	Tree Orange
	69 Tm 168.9 Thelium	
	68 Er 167.3 Frbium	
	67 Ho 164.9 Holmism	- Comp
	66 Dy 162.5 Dysproxium	
L	65 Tb 158.9 Teržium	
	64 Gd 157.2 Gadolimium	
,	63 Eu 152.0 Exarprim	
*/	Sin Sin 150,3 Samarican	
5	o. Pm (145) Prozectivn	
7	Nd 144.2 Neodyminm	
5	Pr Pr 140.9 Praseodymum	
5.0	ر 140.1 وماسة	

	103	<u>-</u>	(90)	7	TITIE THE TAIL
	103	No.	950	Michaelman	THE PARTY OF THE P
	101	Md	(258)	Mandelanium	***************************************
	100	E E	תלמ	Ferminn	
	96	S S	(252)	Enstairinm	
	98				
	76				
	ş,	CH	(247)	Curien	
	ñ.	Am.	(2.43)	American	
i	7 ,				
٨3	₹ ≽	d	(17/57)	ಡಬಾಗಾಗಿರತ್ನು	
100	* =	2	0.862	Cicium	
1.0	7,0	721.0	0.162 r	restacement	
9) F	12	27.	murac	

TURN OVER

CENTRE FOR STRATEGIC EDUCATION – YEAR 11 CHEMISTRY Written Test – October 2010

ANSWER SHEET

STUDENT NAME:

INSTRUCTIONS:

Use a **PENCIL** for **ALL** entries. For each question, shade the box which indicates your answer.

All answers must be completed like THIS example:

Marks will not be deducted for incorrect answers.

NO MARK will be given if more than ONE answer is completed for any question.

If you make a mistake, ERASE the incorrect answer – DO NOT cross it out.

ONE ANSWER PER LINE	ONE ANSWER PER LINE	ONE ANSWER PER LINE
1 A B C D	10 A B C D	19 A B C D
2 A B C D	11 A B C D	20 A B C D
3 A B C D	12 A B C D	
4 A B C D	13 A B C D	
5 A B C D	14 A B C D	
6 A B C D	15 A B C D	
7 A B C D	16 A B C D	
8 A B C D	17 A B C D	
9 A B C D	18 A B C D	