

CSE TEST - OCTOBER 2010

YEAR 11 - CHEMISTRY

Written test 2

ANSWERS & SOLUTIONS BOOK

SECTION A - Multiple choice questions (20 marks)

1	D	5	С	9	Α	13	В	17	В
2	С	6	Α	10	D	14	А	18	D
3	В	7	D	11	Α	15	Α	19	С
4	D	8	В	12	С	16	С	20	В

SECTION B - Short answer questions (55 marks)

1 mark is indicated by *

Question 1 (8 marks)

a. Hydrogen bonding between highly polar water molecules is stronger than the intermolecular dipoledipole bonding between the other polar Group 16 hydrides.*

Intermolecular bonding is overcome during boiling thus water has a higher boiling point *

- b. A. The energy added to liquid water at A increases the average kinetic energy of the molecules and hence the water temperature. Hydrogen bonds are weakened.*
 - B. At B water is boiling to steam. Added energy overcomes the forces of attraction between water molecules. Average kinetic energy is unchanged and the temperature remains constant*
- c. From -5°C to 0°C water has the hydrogen bonded structure of ice. The Hydrogen bonds are weakened as the temperature increases.*

At 0°C the solid hydrogen bonded structure is overcome. Water molecules become closer together and density increases, then decreases due to increased kinetic energy of molecules.*

X a gas. As the temperature of the solution increases the solubility of gases decreases.*
 Y a typical salt. Solubility of salts usually increases with increasing temperature.*

Question 2 (11 marks)

a.
$$n(Al_2(SO_4)_3) = (1.5 \times 0.10) \text{ mol} = 0.15 \text{ mol}$$
 $n(SO_4^{2-}) = (3 \times 0.15) \text{ mol} = 0.45 \text{ mol}$ $n(K_2SO_4) = (2.0 \times 0.10) \text{ mol} = 0.20 \text{ mol}$ $n(SO_4^{2-}) = 0.20 \text{ mol}$ total $n(SO_4^{2-}) = (0.45 + 0.20) \text{ mol} = 0.65 \text{ mol}^*$ $c(SO_4^{2-}) = 0.65/0.20 \text{ mol} = 3.25 \text{ mol}$ = 3.3 mol (correct to 2 sig. figs.)*

b. i.
$$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)^*$$

ii. mol ratio
$$Ba^{2^+}$$
: $SO_4^{2^-} = 1$: 1 $n(Ba^{2^+}) = (3.0 \times 0.2) \text{ mol} = 0.6 \text{ mol}^*$
 $n(SO_4^{2^-}) = 0.65 \text{ mol}$ therefore $SO_4^{2^-}$ is in excess by 0.05 mol*

iii.
$$n(BaSO_4) = n(Ba^{2+})$$
 $m(BaSO_4) = (0.60 \times (137.3+32.1+64)) = 140.04 g$
= 1.4 x 10² (correct to 2 sig figs.)*

c. i.
$$n(K_2SO_4) = 5.72/174.3 \text{ mol} = 0.0328 \text{ mol}^*$$

 $c(K_2SO_4) = 0.0328/0.1 = 0.328 \text{ M (corr. 3 sig figs.)}^*$

ii. total volume of water =
$$(100 + 60) = 160$$
 mL
 $c(K_2SO_4) = 0.0328/0.16 = 0.205$ M (corr. 3 sig figs.)*

iii.
$$m(K_2SO_4) = (0.205 \times 174.3) g = 35.73 gL^{-1*}$$

= 3.75 g 100mL⁻¹ = 3.58% m/v (corr. 3 sig figs.)*

Question 3 (7 marks)

a. i. one of carbonic acid, nitrous acid, nitric acid.

Effect: for example, reaction with minerals causing erosion, introduction of soluble salts into water courses, steps in natural carbon or nitrogen cycles.*

ii. one of sulfuric acid, nitrous acid, nitric acid.

Effect: for example, renders soil sterile, damages growing plants, damages lungs, reacts with concrete, stone and metals*

b. i.
$$H_3O^+(aq) + OH^-(aq) \rightarrow 2H_2O(1)^*$$

ii. $[H_3O^+] = 10^{-4} \text{ M}^*$ total mol $H_3O^+ = 30,000 \times 10^{-4} \text{ mol} = 3.0 \text{ mol}^*$
iii. $n(Ca(OH)_2) = 3.0/2 = 1.5 \text{ mol}^*$
 $m(Ca(OH)_2)$ required = 1.5 x (40.1 + 32 + 2) = 111.15 g
= 1.1 x 10^2 g (correct to 2 sig figs.)*

Question 4 (9 marks)

	Error	Explanation		
1.	Direction of electron flow is incorrect.*	Zn is a stronger reductant than Ni so electrons flow from Zn to Ni.*		
2.	Copper chloride is not appropriate for the salt bridge.*	Salt bridge must be inert with respect to the half cell chemicals. Cu ²⁺ will react with both Zn and Ni.*		
3.	Zn ²⁺ /Zn half cell equation should be written as an oxidation half equation.*	Zn is the stronger reductant so donates electrons $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{*}$		

b.

Reaction	Redox (Yes/No)	Oxidant	
$Ba(NO_3)_2(aq) + H_2SO_4(aq) \rightarrow 2HNO_3(aq) + BaSO_4(s)$	No	*	
$2Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$	Yes	Cl ₂ *	
$2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$	Yes	O ₂ *	
NaCl(s) → Na ⁺ (aq) + Cl ⁻ (aq)	No	*	

Question 5 (6 marks)

a.
$$n(Cu(NO_3)_2) = 20/(63.6+28+96)$$
 = 20/187.6 = 0.1066 mol*
mol ratio $(Cu(NO_3)_2)$: $CuO = 1$: 1 $n(CuO) = 0.1066$ mol*
 $m(CuO) = 0.1066 \times 79.6 = 8.485 \text{ g} = 8.49 \text{ g (corr. 3 sig. figs.)}$ *

b. mol ratio $(Cu(NO_3)_2): NO_2: O_2 = 2:4:1^*$

total mol gas = 2.5 x 0.1066 = 0.2665 mol*

$$v = nRT/P \ v(total gas) = 0.2665 \times 8.314 \times 333 \ L^* \ v(total gas) = 6.62 \ L^* \ (corr. 3 sig. figs.)$$

1.10 x 101.3

Question 6 (10 marks)

a. Either: $2H_2O_2(aq) \xrightarrow{MnO_2} 2H_2O(1) + O_2(g)^{**}$

or $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)^{**}$

or fractional distillation of liquid air. **

Either i. oxygen: collect over water.*

ii. only slightly soluble in water.*

or i. carbon dioxide: collect by downward delivery (upward displacement of air)*

ii. soluble in water and more dense than air*

or i. separation from other gases of air according to boiling point*

ii. nitrogen has the lowest boiling point and rises to the top of the column. *

b. i. $Cu(s) + 4HNO_3(I) \rightarrow Cu(NO_3)_2(aq) + 2NO_2(g) + 2H_2O(I) **$

ii. $Zn(s) + 2H_2SO_4(I) \rightarrow ZnSO_4(aq) + SO_2(g) + 2H_2O(I)^{**}$

Question 7 (4 marks)

- a. UV radiation or hV * O_3 *
- b. For example, ozone is a poisonous pollutant at ground level and may cause, for example, lung damage and damage plants.*
- c. For example, ozone in the stratosphere absorbs UV radiation from the sun which otherwise can kill or damage living tissue, for example, by causing cancerous growths.*
 - or Ozone can be used to purify water by killing any micro organisms present.*