

STAV Publishing 2009

Student name

CHEMISTRY

Unit 1

Trial Examination

QUESTION AND ANSWER BOOK

Total writing time: 1 hour 30 minutes

Section	Number of questions	Number of marks
A	20	20
В	8	60
	Total	80

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, an approved scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

Materials supplied

• Question and answer book of 11 pages, with a detachable data sheet in the centrefold and a detachable answer sheet for multiple-choice questions inside the front cover.

Instructions

- Detach the data sheet from the centre of this book and the answer sheet for multiple-choice questions during reading time.
- Write your **name** in the space provided above on this page and on the answer sheet for multiple-choice questions.
- All written responses should be in English.

At the end of the examination

• Place the answer sheet for multiple-choice questions inside the front cover of this book.

Published by STAV Publishing. STAV House, 5 Munro Street, Coburg VIC 3058 Australia.

Phone: 61 + 3 9385 3999 • Fax: 61 + 3 9386 6722 • Email: stav@stav.vic.edu.au Website: http://www.sciencevictoria.com.au/stavpublishing © STAV Publishing April 2009

ABN 61 527 110 823

All rights reserved. Except under the conditions described in the Copyright Act 1968 of Australia and subsequent amendments, no part of this publication may be reprinted, reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any other information storage or retrieval system, without permission in writing from the publisher.

© STAV Publishing 2009 11

Question 7

When high energy radiation is passed through a sample of sodium vapour, sodium atoms in an excited state are produced. As a consequence the sample then emits yellow light. If this light is passed through a diffraction grating, an emission spectrum is produced consisting of two discrete yellow lines at about 590 nm on a black background.

a.	What is meant by 'an excited state'?					
b.	Write a subshell electron configuration for a sodium atom to show an excited state.	l mark				
c.	Explain how the lines in the emission spectrum are produced.	1 mark				
		3 marks				
Ques	ation 8	Total 5 marks				
	mple of HNO ₃ contains twice as many atoms as there are ions in 6.846 g of Al ₂ (SO ₄) ₃ . ulate the mass of the HNO ₃ in the sample.					

6 marks

Chemistry Unit 1 Trial Examination

END OF EXAMINATION

© STAV Publishing 2009 10 Chemistry Unit 1 Trial Examination

Question 5

Health authorities in many countries support the addition of fluoride ions to water supplies to prevent tooth decay. If the recommended fluoride ion concentration is set at 0.90 mg of fluoride ions per litre of drinking water, calculate

ii. the number of fluoride ions in 200 mL of the drinking water. Sodium fluoride, NaF, is usually the substance added to drinking water to provide the fluor Determine the mass of sodium fluoride, in grams, that must be in each litre of the water for	
Determine the mass of sodium fluoride, in grams, that must be in each litre of the water for	***************************************
Determine the mass of sodium fluoride, in grams, that must be in each litre of the water for	3 mark
concentration of fluoride ions to be 0.90 mg L ⁻¹ ?	

3 marks

Total 6 marks

Question 6

Complete the following table.

Name of compound	Formula of compound
calcium nitride	
sodium sulfide	
iron(III) chloride	
	CH₃CH₂CH₂OH
	CH ₃ CH ₂ CH(CH ₃)CH ₃
	CH ₂ CHCH ₂ CH ₃
3-methylbutanoic acid	semi-structural formula required
	CH₃CH₂CHClCH₃

8 marks

STAV Publishing 2009

CHEMISTRY Unit 1 Trial Examination MULTIPLE CHOICE ANSWER SHEET

STUDENT	
NAME:	

INSTRUCTIONS:

USE PENCIL ONLY

- Write your name in the space provided above.
- Use a PENCIL for ALL entries.
- If you make a mistake, **ERASE** it **DO NOT** cross it out.
- Marks will **NOT** be deducted for incorrect answers.
- NO MARK will be given if more than ONE answer is completed for any question.
- Mark your answer by **SHADING** the letter of your choice.

	ONE A	NSWE	R PEF	RLINE		ONE AN	ISWE	R PER	LINE
1	Α	В	С	D	11	Α	В	С	D
2	A	В	С	D	12	А	В	С	D
3	А	В	С	D	13	А	В	С	D
4	A	В	С	D	14	А	В	С	D
5	A	В	С	D	15	А	В	С	D
6	A	В	С	D	16	Α	В	С	D
7	A	В	С	D	17	А	В	С	D
8	Α	В	С	D	18	А	В	С	D
9	Α	В	С	D	19	А	В	С	D
10	Α	В	С	D	20	A	В	С	۵
	1				1	l			

© STAV Publishing 2009

		•
		•
		•

© STAV Publishing 2009 9

Question 4

A freshly cut piece of potassium burns in a gas jar containing chlorine gas. A white smoke consisting of potassium chloride is formed and deposited in the gas jar.

Write a balanced equation for the reaction betw	een potassium and chiorine.
	1 ma
With reference to shell electron configuration, and chlorine atoms during this reaction.	explain the changes that occur in both the potassiur
	2 mar
The melting point of the potassium chloride for understanding of structure and bonding of each	rmed is much higher than that of chlorine. Use you substance to explain why.

6 marks

Total 9 marks

Chemistry Unit 1 Trial Examination

Question 3

a.	Draw a valence diagram (showing all lone electron pairs on the central atom) for each of the
	following molecules and state the shape of the molecule.

Molecule	Valence diagram	Shape
N_2		
CHCl₃		
SF_2		

6 marks

b.	For the three molecules indicated, state whether they are polar or non-polar. Briefly justify your response.
N ₂	
СНС	3
SF ₂	

3 marks

Total 9 marks

SECTION A – Multiple-choice questions

Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** or that **best answers** the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks will not be deducted for incorrect answers.

No mark will be given if more than one answer is completed for any question.

Question 1

Glen Seaborg contribution to the elements in the periodic table is considerable. He is best known for the

- A. discovery of the noble gases
- B. discovery of element 106, Sg
- identification of many trans-uranium elements
- synthesis of element 51, Sb D.

Question 2

Which of the following atoms has the greatest number of neutrons?

- ⁵⁶Mn A.
- ⁵⁶Ni B.
- ⁵⁷Co
- D.

Question 3

The electronic configuration of the Mg²⁺ ion is

- $1s^22s^22p^63s^2$
- $1s^22s^22p^63s^23p^2$
- $1s^22s^22p^4$
- $1s^22s^22p^6$ D.

Question 4

Nickel is a valuable metal. The number of electrons that are in the outer most occupied subshell of a nickel atom is

- A. 2
- В. 8
- C. 10
- D. 18

2 © STAV Publishing 2009 Chemistry Unit 1 Trial Examination

Question 5

Which of the following ionic compounds would be expected to have the highest melting point?

- sodium fluoride A.
- sodium oxide В.
- magnesium chloride
- D. magnesium oxide

Question 6

Which of the following molecules is v-shaped (angular)?

- H_2S
- B. PCl_3
- C_2H_6
- HCl D.

Question 7

Which of the following molecules is non-polar?

- H_2S A.
- PCl_3 В.
- C. C_2H_6
- D. HCl

Question 8

A substance melts at high temperature, is insoluble in water, and does not conduct electricity in both the solid and liquid states. This substance is most likely to be

- Αl A.
- O_2 В.
- C. CH_4
- D. SiO_2

Question 9

When going down Group I, which one of the following occurs?

- the elements become less reactive
- В. the first ionisation energy decreases
- C. the atomic radius decreases
- D. the attraction between the nucleus and valence electron increases.

Question 2

© STAV Publishing 2009

The diagram below represents the Periodic Table with a selection of elements represented by letters. Note: these letters are <u>not</u> the actual symbols of these elements.

7

				Q									
A									X	Y	Z		
	D							T				L	М
							Е						
G							•					R.	

a.	Selecting only from the elements labelled on the Periodic Table above write the letter (A, D, E, G
	L, M, Q, R, T, X, Y or Z) corresponding to the element that:

₽, 141	, Q, R, 1, M, 1 of 2) corresponding to the element that.	
i.	is a non-metal with five electrons in its outershell	
ii.	is in Group 13	
iii.	is a transition element with three fully occupied shells	
iv.	has the highest electronegativity of the elements shown	***************************************
v.	is in Period 2 and has a total of three electrons	
vi.	forms an ionic compound with chlorine where the ion of the element has a +2 charge	
vii.	forms molecules containing one atom of the element to three atoms of element Q	
Aton form	ns of two elements react to form a compound. Give the chemical	formula of the con

7	mark

Chemistry Unit 1 Trial Examination

b.	Atoms of two	elements react	to form	a compound.	Give the	chemical	formula	of the	compound
	formed								

i.	using the elements A and L.	
ii.	using the elements Z and T.	

2	marl	Ć

Give the electron shell arrangement for

ii.

an atom of element X	

the cation formed from element D	
the cation formed from element D	

2 marks

Total 11 marks

© STAV Publishing 2009 6 Chemistry Unit 1 Trial Examination

SECTION B – Short answer questions

Instructions for Section B

Answer all questions in the spaces provided.

To obtain full marks for your responses you should

- give simplified answers with an appropriate number of significant figures for all numerical questions; unsimplified answers will not be given full marks.
- show all working in your answers to numerical questions. No credit will be given for an incorrect answer unless it is accompanied by details of the working.
- make sure chemical equations are balanced and that the formulas for individual substances include an indication of state; for example, H₂(g); NaCl(s)

Question 1

A sample of the element lithium $(A_r = 6.9)$ has two naturally occurring isotopes as shown in the Table below.

Identity of isotope	Relative isotopic mass
Lithium-6	6.015
Lithium-7	7.016

Name the instrument used to determine relative isotopic mass.

		1 mark
.	What does the term 'relative' refer to?	
•	Calculate the percentage of Lithium-7 in the above sample.	1 mark
l .	Write the full isotopic symbol (nuclide representation) for a Lithium-7 atom.	3 marks
		1 mark Total 6 marks

© STAV Publishing 2009 3 Chemistry Unit 1 Trial Examination

Question 10

Which of the following would have the largest radius?

- A. a sodium atom
- B. a sodium ion
- C. a potassium atom
- D. a potassium ion

Question 11

Some students set out to determine the empirical formula of black copper oxide. They started with 2.65 g of black copper oxide which was then converted in a series of reactions to metallic copper. The mass of dry copper obtained was 2.12 g. The empirical formula of the oxide is

- A. CuO
- B. Cu₂O
- C. Cu₃O₄
- D. CuO₂

Question 12

The amount of substance, in mol, of sodium ions in 1.64 g of sodium phosphate, Na₃PO₄, (M = 164 g mol⁻¹) is closest to

- **A.** 0.0100
- **B.** 0.0300
- **C.** 1.00
- **D.** 3.00

Question 13

The number of hydrogen atoms present in 2.0 g of CH₄ is

- A. 7.5×10^{22}
- B. 3.0×10^{23}
- 1.2×10^{24}
- **D.** 4.8×10^{24}

© STAV Publishing 2009 4 Chemistry Unit 1 Trial Examination

Question 14

The mass in grams of 0.150 mol of butanoic acid is

- **A.** 9.00
- **B.** 11.1
- **C.** 11.4
- **D.** 13.2

Question 15

All alkenes have

- A. only single covalent bonds
- B. one or more C/C double covalent bonds
- C. similar size and shape molecules
- D. no more than one double bond

Question 16

The number of hydrogen atoms present in a molecule of butan-1-ol is

- **A.** 8
- **B.** 9
- **C**. 10
- D. 11

Question 17

Which one of the following substances is not able to form an addition polymer?

- A. CH₃(CH₂)₅CHCCl₂
- $\mathbf{B.} \quad C_2H_2Cl_2$
- \mathbf{C} . C_2H_3Cl
- D. CH₃CHClCH₂Cl

Question 18

The number of different structural isomers represented by the formula C₅H₁₂ is

- **A.** 2
- **B.** 3
- **C.** 4
- **D**. 5

© STAV Publishing 2009

Chemistry Unit 1 Trial Examination

Question 19

The list below contains molecular formulae of three organic compounds.

5

- I. $C_2H_4O_2$
- II. C_2H_6O
- III. $C_2H_6O_2$

The listed formulae that could represent carboxylic (alkanoic) acids are

- A. I only
- B. III only
- C. I and III only
- D. I, II, and III

Question 20

Which of the following substances is expected to have the highest boiling point?

- A. CH_4
- B. C_2H_6
- C. CCl₄
- \mathbf{D} . $\mathbf{C}_2\mathbf{Cl}_6$

END OF SECTION A

This page is blank

CHEMISTRY Unit 1 Trial Examination

DATA SHEET

Directions to students

Detach this data sheet during reading time.
This data sheet is provided for your reference.

Table of some selected ions

2

1+		2+		3+		
Silver	$Ag^{^{+}}$	Zinc	Zn^{2+}	Iron(III)	Fe ³⁺	
Copper(I)	Cu⁺	Copper(II)	Cu ²⁺	Chromium(III)	Cr ³⁺	
Ammonium	NH ₄ ⁺	Mercury(II)	Hg^{2^+}			
	± = = = = = = = = = = = = = = = = = = =	Iron(II)	Fe ²⁺			
1-		2-		3-		
Hydroxide	OH-	Carbonate	CO ₃ ²⁻	Phosphate	PO ₄ ³⁻	
Nitrate	NO_3^-	Sulfate	SO_4^{2-}	The more of the second	A TO THE TOTAL PROPERTY OF THE TOTAL PROPERT	
Nitrite	NO_2^-	Sulfite	SO_3^{2-}	TO THE STATE OF TH		
Ethanoate	CH₃COO⁻	Dichromate	$\operatorname{Cr_2O_7}^{2-}$	THE		
Permanganate	MnO4"	Hydrogenphosphate	HPO_4^{2-}	A STATE OF		
Hydrogencarbonate	HCO ₃	то по поставления по				
Hydrogensulfate	HSO ₄					

Some electronegativity values

H 2.1

Li	1.0	Ве	1.6	В	2.0	С	2.5	N	3.0	О	3.5	F	4.0
Na	0.9	Mg	1.3	Al	1.6	Si	1.9	P	2.2	S	2.6	Cl	3.2

Approximate Surface energies of some common substances

Substance	Surface energy(in mJ m ⁻²)			
Copper	1370			
Magnesium oxide	1200			
Diamond	9820			
Paraffin wax	50			
Polyethene	32			
Teflon	16			
Mercury	476			
Water	72			
Ethanol	22			
Heptane	20			
Petrol (octane)	20			

Periodic table of the elements

			<u></u>		l _v		
		87 Fr (223) Francium	Cs 132.9 Caesium	37 Rb 85.5 Rubidium	19 X 39.1 Potassium	Lithium Lithiu	1.0 Hydrogen
		88 Ra (226) Radium	56 Ba 137.4 Barium	38 Sr 87.6 Stronflum	20 Ca 40.1 Calcium	9.0 Beryllium 12 Mg 24.3 Magnesium	4 00 2
		Ac (227) Actinium	E G	39 Y 88.9 Yttrium	Sc 44.9 Scandium		
90 Th 232.0 Thorium	58 Ce 140.1 Cerium	104 Rf (261) Rutherfordium	72 Hf 178.5 Hafnium	N	22 Ti 47.9 Titanium	The state of the s	
91 Pa 231.0 Protactinium	Pr 140.9 Praseodymiun	105 Db (262) Dubnium		N iobium	23 V 50.9 Vanadium		
92 U 238.0 Uranium	59 Pr Nd 140.9 Praseodymium Neodymium	Sg (263) Seaborgium	74 W 183.9 Tungsten	42 Mo 95.9 Molybdenum	24 Cr 52.0 Chromium		Key to table
93 Np 237.1 Neptunium	Pm (145) Promethium	107 Bh (264) Bohrium		43 Tc 98.1 Technetiur	25 Mn 54.9 Manganese		Au 197.0 Gold
94 Pu (244) Plutonium	62 Sm 150.3 Samarium	108 Hs (265) Hassium	76 Os 190.2 Osmium	~ .	Fe 55.9		- Atomi - Symby - Relati - Name
95 Am (243) Americium	回 ユ	109 Mt (268) Meitnerium			Co 58.9 Cobalt		Atomic number Symbol of element Relative atomic mass Name of element
96 Cm (247) Curium	64 Gd 157.2 Gadolinium	Mt Ds Rg (271) (272) Meitnerium Darmstadtium Roentgenium	78 Pt 195.1 Platinum	46 Pd 106.4 Palladium	28 Ni 58.7 Nickel	74 TV AVALABILITY	ent mass nt
97 Bk (247) Berkelium	65 Tb 158.9 Terbium	Rg (272) Roentgenium	79 Au 197.0 Gold	Ag 107.9 Silver	29 Cu 63.6 Copper		
98 Cf (251) Californium	66 67 Dy Ho 162.5 164.9 Dysprosium Holmium		Hg 200.6 Mercury	48 Cd 112.4 Cadmium	30 Zn 65.4 Zinc		
Es (254) Einsteinium	67 Ho 164.9 Holmium		81 TI 204.4 Thallium	49 In 114.8 Indium	31 Ga 69.7 Gallium	Boron 13 Al 27.0 Aluminium	် က ဟ
Fm (257) Fermium	68 Er 167.3 Erbium	Uuq	82 Pb 207.2 Lead	Sn 118.7	32 Ge 72.6 Germanium	Carbon 14 Si 28.1 Silicon	င် ဂ ၈
101 Md (258) Mendelevium	69 Tm 168.9 Thulium				1	Nitrogen 15 P 31.0 Phosphorus	*
No (255)	70 Yb 173.0 Ytterbium	116 ∪uh	84 Po (209) Polonium	Te 127.6 Tellurium	34 Se 79.0 Selenium	Oxygen 16 32.1 Sulfur	<u></u>
103 Lr (260) Lawrencium	71 Lu 175.0 Lutetium		At (210) Astatine	53 	35 Br 79.9 Bromine	Fluorine 17 Cl 35.5 Chlorine	р̂ т ७
		118 Uuo	86 R n (222) Radon	Xe 131.3 Xenon	83.8 Krypton	20.1 Neon 18 Ar 39.9 Argon	Helium

3