SECTION A (1 mark for each correct response = 20 marks)

1.	C	2	В	3.	В	4.	*C	5.	D
6.	В	7.	D	8.	C	9.	C	10.	В
11.	D	12.	C	13.	A	14.	C	15.	D
16.	В	17.	A	18.	С	19.	A	20.	D

Discussion of Multiple Choice Answers

- 1. Silver chloride is insoluble in water but ethanol is soluble. Ans: C
- 2. When the water is boiled, it evaporates and leaves the salt behind. Ans: B
- 3. Chlorine is well known for its germicidal properties. Ans: B
- 4. Ionic compounds dissociate whilst molecular compounds ionize. Ans: C
- 5. A, B and C are essentially non-polar and are insoluble in water. Ammonia is able to form hydrogen bonds but ammonia is much more soluble (ammonia fountain demonstration). **Ans: D**
- 6. Silver chloride is insoluble (see solubility table). All others are soluble. Ans: B
- 7. C = n/V so V = n/C = 0.03 / 0.4 = 0.075 L = 75 mL. Ans: D
- 8. Anions are negative ions, in this case Cl⁻ions. $n(MgCl_2) = 0.0200 \implies n(Cl^-)$ ions = 0.0400 N(Cl⁻) = 0.0400 x 6.0 x 10^{23} = 0.240 x 10^{23} Ans: C
- 9. $n(Mg) = m/M = 0.243/24.3 = 0.0100 \text{ mol} \implies n(HCl) = 2 n(Mg) = 0.0200 \text{ mol } Ans: C$
- 10. $n(H_2) = n(Mg) = 0.0100 \text{ mol}$

$$V(H_2) = n \times Vm = 0.0100 \times 24.5 L = 0.245 L = 245 mL$$
 Ans: B

- 11. 3 mol of CO_2 can only react with 1.5 mol of O_2 Hence O_2 is in excess by 0.5 mol Ans: **D**
- 12. The concentration of protons per unit volume indicates the strength of an acidic solution. **Ans:** C
- 13. A salt + water as the only products is a generalisation for acid / base reactions. For carbonates and hydrogenearbonates, CO₂ is also produced. Ans: A
- 14. $[OH^{-}] = 0.050$ pOH = $-\log_{10} 0.050 = 1.3$; pH + pOH = 14 \Rightarrow pH = 12.7 Ans: C

- 15. Galvanic cells produce electricity via a spontaneous redox reaction. **Oxidation** occurs at the **anode** which is the **negative** electrode as it is supplying electrons to the external circuit. As a consequence, **anions** migrate into the **anode half cell** to balance the charge. **Ans: D**
- 16. Halogenated hydrocarbons eg CFC's are known to produce haloradicals eg Cl• which destroy ozone and are recycled to keep on repeating this process. Ans: B
- 17. Gases are most compressed at both low temperatures and high pressures. Ans: A
- 18. pV = nRT; at constant volume and temperature $p \propto n$ (Avogadros's Law). Therefore both gases must have the same number of molecules. **Ans:** C
- 19. V_m (volume of 1 mol) = RT / p = 8.31 x 373 / 101.3 = 30.6 **Ans: A**
- 20. $4 \text{Li}(s) + O_2(g) \rightarrow 2 \text{Li}_2O$

$$n(Li_2O) = m / M = 15/30 = 0.5 \text{ mol}; n(Li) = 2 n(Li_2O) = 1.0 \text{ mol}$$

$$m(Li) = n \times M = 1.0 \times 6.94 = 6.94 \text{ g} = 7.0 \text{ g}$$
 Ans: D

SECTION B

Question 1(3 + 3 + 1 + 1 = 8 marks)

- (a) $Ca(OH)_2$, $Al_2(SO_4)_3$, $Al(OH)_3$ (3 x 1 = 3 marks)
- (b) (i) Calcium hydroxide (1 mark)
 - (ii) $Ca(OH)_2(s) \rightarrow Ca^{2+}(aq) + 2OH^{-}(aq)$ (1 mark) $H^{+}(aq) + OH^{-}(aq) \rightarrow H_2O(1)$ (1 mark)
- (c) $Al^{3+}(aq) + 3OH^{-}(aq) \rightarrow Al(OH)_{3}(s)$ (1 mark)
- (d) Sulfate ions are **spectator** ions ie. they do not take part in the reaction (1 mark)

Question 2 (1 + 3 + 6 = 10 marks)

- (a) A reducing agent causes the reduction of an oxidant but at the same time is oxidized. Zn is the reducing agent since it is oxidised from Zn to Zn ²⁺ (1 mark)
- (b) (i) Any two of the following, 1 mark each: Magnesium dissolves, blue colour of copper ions diminishes, deposit of red brown solid, temperature increases. (2 marks)
 - (ii) $Mg(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Mg^{2+}(aq) (1 mark)$

(c) (i) Overall diagram of galvanic cell including the salt bridge (1 mark)

(ii)
$$2 \text{ Al(s)} + 3 \text{ Zn}^{2+}(\text{aq}) \rightarrow 3 \text{ Zn (s)} + 2 \text{ Al}^{3+}(\text{aq}) (1 \text{ mark})$$

Question 3 (2 + 2 + 3 + 2 = 9 marks)

- (a) The reaction is a redox reaction. C is oxidised to CO (oxidation number increases from 0 to +2) (1 mark) and SiO₂ is reduced to silicon (oxidation number of silicon decreases from +4 to 0) (1 mark)
- (b) n(C) = m / M = 108 / 12 = 9.0 mol (1 mark) $n(SiO_2) = m / M = 360 / 60 = 6.0 \text{ mol}$ (1 mark)

(c)		С	SiO ₂	Si	CO ₂
	Mole ratio	2	1	1	2
	$\mathbf{n}_{ ext{initial}}$	9.0 mol	6.0 mol		
	$n_{ m reacting}$	9.0 mol	4.5 mol		
	$n_{ m produced}$			4.5 mol	9.0 mol
	n _{in excess}		1.5 mol		

Working to indicate that SiO_2 is in excess (1 mark) $n(SiO_2)$ in excess = 1.5 mol (1 mark) $m(SiO_2) = n \times M = 1.5 \times 60 = 90 \text{ g}$ (1 mark)

- (d) $n(Si) = n(SiO_2)$ reacting (1 mark) $m(Si) = n \times M = 4.5 \times 28.1 = 1.3 \times 10^2 \text{ g (2 sf) (1 mark)}$ Question 4 (3 + 2 + 1 = 6 marks)
- (a) (i) CO₂ dissolves slightly with water and reacts with it to form the weak carbonic acid, H₂CO₃. (1 mark)
 - (ii) H_2CO_3 (aq) + $H_2O(l) \rightarrow H_3O^+$ (aq) + HCO_3^- (aq) (1 mark) The increase in $[H_3O^+]$ decreases the pH (1 mark)
- (b) (i) $CaCO_3(s) + 2H^+(aq) \rightarrow H_2O(l) + Ca^{2+}(aq) + CO_2(g)$ (1 mark)
 - (ii) $CaO(s) + 2H^{+}(aq) \rightarrow H_2O(l) + Ca^{2+}(aq)$ (1 mark)
- (c) $2NO(g) + 2CO(g) \rightarrow N_2(g) + 2CO_2(g)$ (1 mark)

Question 5 (4 marks)

HCl ionises in water to create ions (1 mark)

$$HCl(g) + H_2O(aq) \rightarrow H_3O^+(aq) + Cl^*(aq)$$
 (1 mark)

Ethanol molecules, CH₃CH₂OH, remain intact but separate from each other because of their ability to form hydrogen bonds with water molecules. (1 mark)

$$CH_{3}CH_{2}OH(l) \overset{H_{2}O}{\rightarrow} CH_{3}CH_{2}OH(aq) \ \ \textbf{(1 mark)}$$

Question 6 (2 + 1 = 3 marks)

(a) mass of atoms in the final commercial product $= M_r CH_3CH_2Br = 2 \times 12 + 5 \times 1 + 79.9 = 108.9 \text{ g mol}^{-1}$ (1 mark) Total mass of reactants $= M (CH_3CH_2OH) + M (NaBr) + M (H_2SO_4) = 46.0 + 102.9 + 98.1 = 247.0 \text{ g}$

Therefore % atom economy = $(108.9 / 247.0) \times 100 = 44.09 \% (1 \text{ mark})$

(b) H₂SO₄ is *acting as an acid as it transfers a proton* to the -OH group to form water. (1 mark)

Question 7(2+3+3+1+3=12 marks)

- (a) For a dilution, $n_1 = n_2$ or $c_1V_1 = c_2V_2$ (1 mark) $14 \times V_1 = 0.1 \times 2$ $V_1 = 0.2/14 = 0.0143 \text{ L} = 14.3 \text{ mL}$ (1 mark) Therefore 14.3 mL of 14 M nitiric acid are required.
- (b) $n(Na_2CO_3) = c \ V = 0.05 \ x \ 0.25 = 0.0125 \ mol \ (1 \ mark)$ $M(Na_2CO_3) = 2 \ x \ 23.0 + 12.0 + (3 \ x \ 16.0) = 106 \ g \ mol^{-1} \ (1 \ mark)$

 $m(Na_2CO_3) = n \times M = 0.0125 \times 106 = 1.325 g$ (1 mark)

(c) (i) Complete the table (1 mark)

Titration	. 1	2	3	4	5
Titre (mL)	20.30	19.70	19.90	19.80	17.65

(ii) Concordant titres are results that vary within ± 0.1 mL

The concordant titres are from titrations 2, 3 and 4 (1 mark)

2	3	4		
19.70	19.90	19.80		

Ave titration = $(19.70 + 19.90 + 19.80) \div 3 = 19.8 \pm 0.1 \text{ mL}$ (1 mark)

- (d) An aliquot would be taken with a pipette (1 mark)
- (e) $n(Na_2CO_3) = c V = 0.05005 \times 19.8 \times 10^{-2} = 9.91 \times 10^{-4} \text{ mol (1 mark)}$ $n(HNO_3) = 2 \times n(Na_2CO_3) \text{ (1 mark)}$

 $[HNO_3] = n / V = 2 \times 9.91 \times 10^{-4} / 0.02000 = 0.0991 \text{ mol } L^{-1}$ (1 mark)

END OF SUGGESTED SOLUTIONS