SECTION A – Multiple choice questions (20 marks)

1	С	6	С	11	D	16	С
2	D	7	С	12	В	17	В
3	D	8	С	13	В	18	Α
4	В	9	Α	14	В	19	Α
5	Α	10	С	15	D	20	В

SECTION B – Short answer questions (56 marks)

Question 1 (8 marks) Two marks per equation.

Suggested mark scheme of ½ mark for each correct formula indicated by star; and 1 mark for balanced equation. For ionic equations 1 mark for balanced equation and 1 mark for physical states.

a.
$$Zn(s) + {}^{*}H_{2}SO_{4}(aq) \rightarrow {}^{*}ZnSO_{4}(aq) + H_{2}(g)$$
 or $Zn(s) + 2H^{+}(aq) \rightarrow Zn^{2+}(aq) + H_{2}(g)$

b. *Na₂CO₃(s) + 2HCl(aq)
$$\rightarrow$$
 *2NaCl(aq) + H₂O(l) + CO₂(g)

or
$$Na_2CO_3(s) + 2H^+(aq) \rightarrow 2Na^+(aq) + H_2O(I) + CO_2(g)$$

c.
$$*N_2(g) + *3H_2(g) \rightarrow 2NH_3(g)$$

d. *Ba(OH)₂(aq) + 2HNO₃(aq)
$$\rightarrow$$
 *Ba(NO₃)₂(aq) + 2H₂O(I) or H⁺(aq) + OH⁻(aq) \rightarrow H₂O(I)

Question 2 (8 marks) * = 1 mark.

- a. (i) Ammonia solution is a weak base as only a small proportion of NH₃ molecules ionise.*
 The presence of NH₃ molecules acting as a proton (H⁺) acceptor allows the solution to act as a base.*
 - (ii) In the reaction water is acting as an acid*, as it is donating a proton (H⁺).*
- **b.** Hydrogen sulfide in solution can donate two protons.

$$H_2S(aq) + H_2O(I) \rightarrow HS^{-}(aq) + H_3O^{+}(aq) *$$

 $HS^{-}(aq) + H_2O(I) \rightarrow S^{2^{-}}(aq) + H_3O^{+}(aq) *$

c. (i)
$$H_2CO_3$$
 * (ii) $CO_3^{2^-}$ *

Question 3 (5 marks)

a. (i)
$$n(Fe_2O_3) = 3.20/159.8$$

= 0.0200 mol *
(ii) $n(HCI) = 6 \times 0.0200 = 0.120$ mol *
(iii) $V(HCI) = 0.120/2.00$
= 0.0600 L (60.0 mL) *

Question 3 (continued)

b. Percentage of oxygen in
$$K_2Cr_2O_7 = \underline{(7X16.0)} = 38.0\%$$
 * $(2X39.1) + (2X52.0) + (7X16.0)$

Percentage of oxygen in
$$C_6H_{12}O_6 = (6x16.0) = 53.3\%$$
 * (6X12.0) + (12X1.0) + (6X16.0)

Glucose has the higher percentage of oxygen by mass.

Question 4 (7 marks)

a. (i) mole ratio
$$C ext{ } 40.91/12.0 ext{ } : ext{ } H ext{ } 4.54/1.0 ext{ } : ext{ } O ext{ } 54.55/16.0 ext{ } = ext{ } 3.41 ext{ } : ext{ } 3.41 ext{ } * ext{ } $ Simplest ratio ext{ } = ext{ } 1.00 ext{ } : ext{ } 1.33 ext{ } : ext{ } 1.00 ext{ } * ext{ } $ Simplest ratio ext{ } = ext{ } 3 ext{ } : ext{ } $ Empirical formula ext{ } C_3H_4O_3 ext{ } * ext{ } * ext{ } $ Empirical formula ext{ } C_3H_4O_3 ext{ } * ext{ } $ $ Empirical formula ext{ } C_3H_4O_3 ext{ } * ext{ } $ $ Empirical formula ext{ } C_3H_4O_3 ext{ } * ext{ } $ $ Empirical formula ext{ } C_3H_4O_3 ext{ } * ext{ } $ $ Empirical formula ext{ } C_3H_4O_3 ext{ } * ext{ } $ $ Empirical formula ext{ } C_3H_4O_3 ext{ } * ext{ } $ $ Empirical formula ext{ } C_3H_4O_3 ext{ } * ext{ } $ $ Empirical formula ext{ } C_3H_4O_3 ext{ } * ext{ } $ $ Empirical formula ext{ } C_3H_4O_3 ext{ } * ext{ } $ $ Empirical formula ext{ } C_3H_4O_3 ext{ } * ext{ } $ $ Empirical formula ext{ } C_3H_4O_3 ext{ } * ext{ } $ $ Empirical formula ext{ } C_3H_4O_3 ext{ } * ext{ } $ $ Empirical formula ext{ } C_3H_4O_3 ext{ } * ext{ } $ $ Empirical formula ext{ } C_3H_4O_3 ext{ } * ext{ } $ $ Empirical formula ext{ } $ Empirical form$$

(ii) Empirical formula mass
$$C_3H_4O_3 = 88gmol^{-1}$$

Molecular formula mass = $176gmol^{-1}$

Molecular formula is C₆H₈O₆ *

b. Abundance of
123
Sb isotope = x% Abundance of 121 Sb isotope = $(100 - x)$ %

$$(123x) + 121(100-x)/100 = 218$$

Solving for x: $x = 40\%$

Abundance of ¹²³Sb isotope = 40% Abundance of ¹²¹Sb isotope = 60%

Question 5 (8 marks)

- a. (i) Place a glowing splint into the test tube. If it catches alight the gas is oxygen. *
 - (ii) Bubble the gas through limewater. If the solution goes milky/cloudy the gas is carbon dioxide. *
- **b.** Argon is used as an inert atmosphere e.g. in light globes or in arc welding. * Argon is a noble gas, its stable number of electrons in the outer shell makes it unreactive.*
- **c.** Carbon dioxide does not support combustion* and being denser than air smothers the fire by preventing oxygen from reaching the fuel. *

d.
$$n(CO_2) = 4.90 \times 10^3/24.5 = 200 \text{ mol }^*$$

 $Mass(CO_2) = 200 \times 44.0 = 8800g (8.80kg) ^*$

Question 6 (9 marks)

- a. Charles' Law: The volume of a fixed amount of gas at constant pressure is directly proportional to its absolute temperature. (1 mark for relationship between volume and temperature; 1 mark for constant pressure and amount of gas).
- **b.** $V_1/T_1 = V_2/T_2$ $30.0/295 = 60.0/T_2$ * for temperatures in Kelvin. $T_2 = 590K$ $= 317^{\circ}C$ *

c. When the can is heated, gas particles gain energy and collide with the walls of the container more often, which corresponds to an increase in pressure.* As the volume is fixed, the increased pressure might split the can, causing it to explode. *

d.
$$P_1V_1/T_1 = P_2V_2/T_2 \qquad \text{* for correct relationship}$$

$$(102X340)/293 = (105\ V_2)/313 \qquad \text{* for correct values}$$

$$V_2 = 353\ \text{mL} \qquad \text{*}$$

Question 7 (5 marks)

- a. Zinc *, as it reacted with each of the solutions tested.*
- b. (Zn) Pb Cu Ag *
- c. $2Ag^{+}(aq) + Zn(s) \rightarrow Zn^{2+}(aq) + 2Ag(s) *$
- d. The rate of the reaction might be too slow to observe.*

Question 8 (5 marks)

- a. If the painted surface is damaged, the metal is exposed to air (oxygen) and water, which will cause corrosion. *
- **b.** (i) Magnesium or zinc.* The sacrificial electrode is more reactive than iron, and oxidises in preference to it *
 - (ii) An opposing current makes the iron a cathode instead of an anode*, preventing the electron flow (or formation of Fe²⁺) that results from oxidation of the iron.*