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Question 1  C
C is correct. Using the formula for the inverse of a 2 × 2 matrix gives: 

1 1

2 3 1 6

3 1

6 2

1

12

3 1

6 2

ad bc

d b

c a�
�

�
�

�
�

�

�
� � � � ��

�
� �
�

�
�

�

�
�

�
��

�
�

�

( ) ( )

��
�

A is incorrect. This option may be reached by making a sign error in the evaluation of ad – bc, such  

as 2 × 3 – (1 × –6) = 0. If the determinant is 0, then the inverse will not exist.

B is incorrect. This option may be reached by not recognising that I is the identity matrix; thus, while 

MM–1 = I, M–1 ≠ I.

D is incorrect. As the inverse of M exists, it follows that MM–1 = I.

QUESTION 2  C

C is correct. Substituting �
�

�
3

 into 2sin2(θ) gives: 

2 2
3

2

2
3

2

2
3

4
1 5

2 2

2

sin ( ) sin

.

� �
�

�
�

�

�
�

� �
�

�
�

�

�
�

� ��
�
�

�
�
�

�

Substituting �
�

�
3

 into sin
�
2

�
�
�

�
�
�  gives:

sin sin

sin

.

�

�

�
2

6

3 2

0 5

�
�
�

�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�

�
Therefore: 

2 2
3

1 5 0 5

1

2 6
2 2sin ( ) sin sin sin

. .

�
�� �

� � �
�
�

�
�
� �

� �
�

�
�
�

�
�
�

�
�
�

�
�
�

A is incorrect. This expression may be reached by assuming that sin .
�
3

0 5
�
�
�

�
�
� �  and sin .

�
6

3

2
�
�
�

�
�
� �

B is incorrect. This expression may be reached by assuming that sin .
�
3

0 5
�
�
�

�
�
� �  and sin sin( ).

�
�

2

1

2
�
�
�

�
�
� �

D is incorrect. This expression may be reached by neglecting to square sin(θ) when substituting.



QCE Specialist Mathematics Units 1&2 Trial Examination Paper 1 Suggested Solutions

Copyright © 2023 Neap Education Pty Ltd	 QCE_SM12_P1_SS_2023	 3

QUESTION 3  A

A is correct. Given that cot( )
tan( )

,�
�

�
1

 the vertical asymptotes will occur when tan(x) = 0.  

As tan( )
sin( )

cos( )
,x

x

x
=  sin(x) must be 0, which occurs for integer multiples of π.

B is incorrect. This option may be reached by misinterpreting the vertical dilation of 3 as a horizontal 

dilation of 
1

3
.

C is incorrect. This option may be reached by finding an expression for the asymptotes of the function  

f(x) = tan(x), and assuming that the period of a tan function is 
π
2

.

D is incorrect. This option may be reached by finding an expression for the asymptotes of the function  

f(x) = tan(x).

QUESTION 4  B
B is correct. 

z z z z

z

2 2

2

4 5 4 4 1

2 1

� � � � � �

� � �( )

Hence, equating to 0 gives:

( )z

z

i

� � �

� � � �
� �

2 1 0

1 2

2

2

A is incorrect. This option may be reached by factorising z2 – 4z + 4 as (z + 2)2 or implementing the 

quadratic formula as z
b b ac

a
�

� �2 4

2
,  which omits the negative coefficient of b.

C is incorrect. This option may be reached by implementing the quadratic formula as z b
b ac

a
� �

�2 4

2
,  

which omits the negative coefficient of b and applies the divisor to only the second term.

D is incorrect. This option may be reached by implementing the quadratic formula as z b
b ac

a
� � �

�2 4

2
,  

which applies the divisor to only the second term.
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QUESTION 5  C
C is correct.

6

2

6

2 6 2

6 5 4

2 4
30

2
15

�

�
�
�

�
� � �

�
� �

�

�

!

!( )!

!

! !

A is incorrect. This option may be reached by interpreting the notation 
6

2

�

�
�
�

�
�  as 

6

2
.

B is incorrect. This option may be reached by misinterpreting the notation 
6

2

�

�
�
�

�
�  as 6 × 2.

D is incorrect. This option may be reached by evaluating 6P2 instead of 6C2.

QUESTION 6  D
D is correct. Using the addition principle Pr( ) Pr( ) Pr( ) Pr( )A B A B A B� � � � �  gives:

Pr( ) . . .

.

A B� � � �
�

0 3 0 3 0 2

0 4

n A B( ) .� � �
�

0 4 100

40

A is incorrect. This option may be reached by not realising that both Pr(A) and Pr(B) are 0.3 and thus 
finding Pr( ) . .A B� � 0 1

B is incorrect. This option may be reached by misinterpreting the symbols Pr( )A B∩  and Pr( ).A B∪

C is incorrect. This option may be reached by finding either n(A) or n(B), not n A B( ).∪  This may result 
from the misinterpretation of the statement Pr(A) = Pr(B) = 0.3, or the inability to interpret the word ‘union’.

QUESTION 7  A
A is correct. 

z cis

i

1 2
2

2

� ��
�
�

�
�
�

� �

�

� � � �

�
�

z i

i

z

1

3

2

2

( )

B is incorrect. This option may be reached by moving the negative sign from the argument to the magnitude.

C is incorrect. This option may be reached by incorrectly converting z2 to polar form. In polar form, 

z cis2 2
4

� ��
�
�

�
�
�

�
,  which may be confused with 2

2
cis ��

�
�

�
�
�

�
 by students who are inexperienced with radians.

D is incorrect. This option may be reached by assuming that 2 2i i= ,  or misinterpreting the notation  

as representing the conjugate operation.
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QUESTION 8  D
D is correct. When a = 4 and b = 3, the values are compliant with the assumption as a > b. Substituting into 

a
2 – b2 gives:

4 3 16 9

7

2 2� � �
�

The number 7 is not even, so option D is a counter example that disproves the assertion.

A is incorrect. This option may be reached by assuming that an example of the assumption is required. 

Substituting a = 5 and b = 3 into a2 – b2 gives:

a b2 2 2 25 3

25 9

16

� � �
� �
�  (even)

B is incorrect. This option may be reached by misinterpreting the assumption and thus selecting a and b 
values that are both even.

C is incorrect. This option may be reached by misinterpreting the assumption and thus selecting values that 
fulfil a < b, rather than a > b. 

QUESTION 9  B
B is correct. The vector v lies in the j direction. Hence, the projection of u on v is the term in the component 
expression that is in the j direction; that is, 2 j.

A is incorrect. This option may be reached by interpreting v as being in the i direction, or finding the 
component of u that is perpendicular to v.

C is incorrect. This option may be reached by failing to distinguish between the projection, which applies 
to vectors, and the magnitude of the projection, which applies to scalars.

D is incorrect. This option may be reached by determining the magnitude of u instead of the projection.

QUESTION 10  B
B is correct. The number of seating arrangements for the bearded men is 2!. The number of seating 
arrangements for the beardless men is 3!.

� � �
� �
�

n( ! !arrangements) 2 3

2 6

12

A is incorrect. This option may be reached by evaluating 3!, which overlooks the 2! ways to arrange  
the men with beards. 

C is incorrect. This option may be reached by evaluating 4!.

D is incorrect. This option may be reached by evaluating 5! after misinterpreting the restriction. 
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SECTION 2

QUESTION 11  (4 marks)
Method 1: 

z z

z

i

z i z

z

z

2

2

2

2

2

6 9

3 4

2

3 2 3 2

4 3 4

3

� � �

� � � �

� �
� � � � �

� � �

�

( )

( )

( ) ( )

( )

( )( ii)
[4 marks]

1 mark for completing the square using z2 + 6z + 9.

1 mark for rewriting +4 as –(–4) to show progress towards the difference of two squares. Note: This may 

be implied by subsequent working.

1 mark for showing evidence that –4 = (2i)2.

1 mark for providing the correct solution.
Method 2: 

Solving z2 + 6z + 13 = 0 using the quadratic formula gives a = 1, b = 6, c = 13. Therefore:

z
b b ac

a

i

�
� � �

�
� � �

�

� � �

� �
�

2

2

4

2

6 6 52

2

3 2

3
16

2

� � � � � � � �
� � � � �

P z z i z i

z i z i

( ) ( ( ))( ( ))

( )( )

3 2 3 2

3 2 3 2
[4 marks]

1 mark for showing evidence of using the quadratic formula to solve Q(z) = 0.
1 mark for substituting a = 1, b = 6 and c = 13.

1 mark for obtaining –3 ± 2i.
1 mark for factorising Q(z) using brackets of the form (z – (first solution))(z – (second solution)). 

Note: Accept follow-through errors.
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QUESTION 12  (5 marks)

a)	 � � � �AOC 180 2�  as ∆AOC isosceles (radii). The internal angles of ∆AOC sum to 180°.
[1 mark]

1 mark for providing the correct solution. 
Note: Accept equivalent expressions; for example, 180 – (θ + θ).

b)	 � � � ��BOC AOC BOC2�  as  and  are supplementary.
[1 mark]

1 mark for providing the correct solution.
Note: Accept equivalent expressions.

c)	 Method 1:

� �
�

� � �

OCB

OCB

180 2

2
90

�

�( )  as  isosceles (radii). The intern� aal angles of  sum to 180 .�OCB �

� � � ��
� � �
� �

ACB ACO OCB

� �90

90  (as required)
 

[3 marks]
1 mark for calculating ∠OCB = (90 – θ)°.

1 mark for showing that ∠ACB = 90°.
1 mark for using appropriate reasoning, units and sequencing.

Method 2:

� �
�

� � �

OBC

OCB

180 2

2
90

�

�( )  as  isosceles (radii). The intern� aal angles of  sum to 180 .�OCB �
 

Given that the sum of internal angles of ∆ABC is 180°:

� � � � ��
� � � �
� �

ACB BAC ABC180

180 90

90

( )

( )� �
 (as required)

[3 marks]
1 mark for calculating ∠OCB = (90 – θ)°.

1 mark for showing that ∠ACB = 90°.
1 mark for using appropriate reasoning, units and sequencing.

Method 3 (vectors):

When OC c OB b OA b
� ��� � ��� � ���

� � � �and  , .

RTP: AC BC
� ��� � ���

� � 0

( ) ( ) ( ) ( )c a c b c b c b

c c b b

c b

� � � � � � �
� � � �

� �
�

2 2

0 (radii)
[3 marks]

1 mark for showing that the dot product must equal zero for orthogonal vectors.

1 mark for expressing vectors AC
� ���

 and BC
� ���

.

1 mark for evaluating the dot product as 0.
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QUESTION 13  (5 marks)

a)	 Method 1: 

)11 5 0000
0 45

4 40

0 60

0 55

0 050

00

0

0

.
.

.

.

.

.

−

−

� �
5

11
0 45.   

[2 marks]
1 mark for setting out the division using 5 inside the division sign and 11 outside  

the division sign.
1 mark for providing the correct solution. Note: Accept variations in notation;  

for example, 0.45 .
 Method 2:

∵

� �

5

11

45

99
5

11
0 45

=

= .

[2 marks]
1 mark for providing the correct solution. Note: Accept variations in notation;  

for example, 0.45 .
Note: Only 1 mark can be awarded for Method 2 as the question requires an appropriate  

division, which is not present in this method.
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b)	 Method 1:

0 1232323 0 1 0 023

122

990
61

1

10

23

99

1

10
99

990

23

990

. . .   � �

�

�

� � �

� �

4495
[3 marks]

1 mark for separating the decimal into the sum of non-recurring and recurring parts.
1 mark for providing the correct solution without simplification. Note: This mark may  

be implied by the simplified solution.
1 mark for simplifying the solution.

Method 2: 

x

x

�

� �

0 123

100 12 323

.

.

 

 

100 99

12 323 0 123

12 2

x x x� �

� �
�

. .

.

   

x =

=

=

12 2

99
122

990
61

495

.

[3 marks]
1 mark for using a strategy where the original number is multiplied by 100.

1 mark for providing the correct solution without simplification. Note: Accept any  
equivalent expression. This mark may be implied by the simplified solution.

1 mark for simplifying the solution.
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QUESTION 14  (5 marks)

a)	
A� �

�
�

�
�

�
�

�

�
�

�
� � �

�
�
�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

1 1

1

5 1 2 2

5 2

2 1

5 2

2 1

ad bc

d b

c a

[1 mark]
1 mark for providing the correct solution.

b)	
A B� �

�
�
�

�
�

�

�
�

��

�
�

�

�
�

�
� � �

� � �
�

�
�

�

�
�

�
�

�

1 5 2

2 1

3 1

1 2

15 2 5 4

6 1 2 2

13 9

5 4

��

�
�

�

�
�

[2 marks]

1 mark for evaluating at least two elements of A–1B. 

1 mark for evaluating all four elements of A–1B.

Note: Accept follow through errors. Consequential on answer to Question 14a).

c)	 AX B

A AX A B

X A B

�

�

�

� �

�

1 1

1

[1 mark]
1 mark for providing the correct solution.

Note: The order of the notation is important. Do not accept BA–1 for this mark.

d)	 Given that A–1B was evaluated in Question 14b):

X �
�

�
�

�
�

�

�
�

13 9

5 4
[1 mark]

1 mark for providing the correct solution.
Note: Consequential on answer to Question 14b).
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QUESTION 15  (5 marks)

a)	 M
c c

�
� � ��

�
�

�
�
�

1

2

3

2
,  

[1 mark]
1 mark for providing the correct solution. 

Note: Accept equivalent expressions; for example, (0.5c – 0.5, 0.5c + 0.5).

b)	 In order to produce a right angle, AB BC
� ��� � ���

� � 0.

AB
� ���

� �

�
�
�

�

�
�

�

�
�

�
�
�

�
�

�

�
�

b a

2 1

1 3

3

2

BC c b

c

c

� ���
� �

�
�
�

�

�
�

�

�
�

2

1

3

2

2

1

4 0

3 6 2 2

4

�
�

�
�

�

�
� �

�
�

�

�
�

�

�
�

� �

� � � �

�

c

c

c

c c

c
[4 marks]

1 mark for showing that the dot product of perpendicular vectors must be 0.
1 mark for finding a displacement vector using the definition AB

� ���
� �b a.

1 mark for expressing the dot product as either 3c – 6 – 2c + 2 or –(3c – 6 – 2c + 2).
1 mark for providing the correct solution.
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QUESTION 16  (8 marks)

a)	 p zw

cis cis

cis

cis

�

� �
�
�

�
�
�� ��

�
�

�
�
�

� � ��
�
�

�
�
�

� ��

1
4

2
2

1 2
4 2

2
4

� �

� �

�
��
�

�
�
�

[2 marks]
1 mark for showing evidence of the method for multiplying magnitudes and adding angles.

1 mark for providing the correct solution in polar form. Note: Accept equivalent expressions;  

for example, �
2

8

�
 for �

�
4

.

b)	 q
z

w

cis

cis

cis

cis

�

�

�
�
�

�
�
�

��
�
�

�
�
�

� ��
�
�

�
�
�

� �
�

�

�

� �

�

4

2
2

1

2 4 2

0 5
3

4
. ��

�
�
�

[2 marks]
1 mark for showing evidence of using the method for dividing magnitudes and  

subtracting angles.
1 mark for providing the correct solution in polar form. Note: Accept equivalent expressions;  

for example, 
6

8

π
 for 

3

4
;

π
 
1

2
 for 0.5.



QCE Specialist Mathematics Units 1&2 Trial Examination Paper 1 Suggested Solutions

Copyright © 2023 Neap Education Pty Ltd	 QCE_SM12_P1_SS_2023	 13

c)	

1

1 2 3–1–2–3

2

–1

–2

–3

3

Re(z)

Im(z)

 

[2 marks]
1 mark for plotting the value of p consistently on the polar grid.
1 mark for plotting the value of q consistently on the polar grid.

Note: The values of p and q may be flawed. Consequential on answers to Question 16a) and 16b).

d)	 Method 1:

From the diagram, it is apparent that the angle between p and q is 180°. Hence, the addition of these 
two terms is equivalent to the vector addition. 

s cis

cis

� � ��
�
�

�
�
�

� ��
�
�

�
�
�

( . )

.

2 0 5
4

1 5
4

�

�

[2 marks]
1 mark for providing an appropriate supporting statement for working. Note: This statement  

may refer to vectors or show the (2 – 0.5) step.
1 mark for providing the correct solution. Note: Accept equivalent expressions. Consequential  

on answers to Questions 16a), 16b) and 16c).
Method 2:

p q i i� � ��
�
�

�
�
� �

��
�
�

�
�
� �

�
�
�

�
�
� �2

4
2

4
0 5

3

4
0 5

3
cos sin . cos . sin

� � � �
44

2
1

2
2

1

2
0 5

1

2
0 5

1

2

1

�
�
�

�
�
�

�
�

�
�

�

�
� � �

�

�
�

�

�
� � �

�

�
�

�

�
� �

�

�
�

�

�
�

�

i i. .

.. .

.

5
1

2
1 5

1

2

1 5
4

�

�
�

�

�
� � �

�

�
�

�

�
�

� ��
�
�

�
�
�cis

�

[2 marks]
1 mark for converting to component form by substituting cosθ + isinθ for cis.

1 mark for providing the correct solution. Note: Accept equivalent expressions.  
Consequential on answers to Questions 16a) and 16b).
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QUESTION 17  (4 marks)

10 N

26 N

� 

Considering the sum of these forces, assign i to the direction of the 10 N force and j to the direction of the 
26 N force.

Resolving into components:

i: 1010 26 26
5

13

0

10 10

� � � ��

�
� �

cos( )�

 

j: 26 26
12

13
24

sin( )� � �

�
 

In order for the object to remain stationary, all forces must be balanced.

Therefore, the magnitude of the third force is 24 N.
[4 marks]

1 mark for drawing a diagram that shows two vectors positioned tail to tail with the angle θ  
between them.

1 mark for resolving the forces into components to conduct a vector addition.
1 mark for determining the i direction.

1 mark for providing the correct solution.
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QUESTION 18  (6 marks) 

Given the facts (1) Rcosθ = 1 and (2) R sin� � 3:

� �

�

R

R

sin

sin
tan

�
�

�

3

1

� ��
�
3

 OR 60  

cos .

.

�
3

0 5

0 5 1

2

�
�
�

�
�
� �

� � �
�

R

R

� � � ��
�
�

�
�
�cos( ) sin( ) cosx x x3 2

3

�

Solving  using  gives:cos( ) sin( ) cosx x x� � ��
�
�

�
�
� �3 2 2

3
2

�

2
3

2

3

2

2

3 4

cos

cos

x

x

x

��
�
�

�
�
� �

��
�
�

�
�
� �

� � �

�

�

� �

Using x � �
� �
3 4

 gives:

x � �

� �

� � �

� �

� �

� �

�

4 3
3

12

4

12

15
12 

Using x � � �
� �
3 4

 gives:

x � � �

� � �

� �

� �

� �

�

4 3
3

12

4

12
7

12

∴ the solutions for x are �
�
12

 and �
7

12

�

(continues on next page)
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(continued)
[6 marks]

1 mark for recognising at least one of the facts (1) Rcosθ = 1 OR (2) Rsin 3� � .   

Note: This mark may be implied by subsequent working.

1 mark for determining �
�

�
3

.  Note: Accept 60° for this mark.

1 mark for determining R = 2.

1 mark for converting, formulating and solving R xcos 2( ) .� ��  Note: This expression  

may be flawed.

1 mark for providing the first correct solution for x. Note: Accept responses in degrees.

1 mark for providing the second correct solution for x. Note: Do not accept responses in degrees.

Note: Accept follow-through errors for the values of R and θ. 

QUESTION 19  (8 MARKS)

a)	 Method 1:

If A is in P and A–1 exists, then A = I2.
[1 mark]

1 mark for interpreting ∈ as ‘in’, ∃ as ‘exists’ and ⇒ as ‘if ... then’.
Method 2:

A in P and A–1 exists implies A = I2.
[1 mark]

1 mark for interpreting ∈ as ‘in’, ∃ as ‘exists’ and ⇒ as ‘implies’.

b)	 Method 1:

The logic that precedes statement 6 is all sound. 

The only idempotent matrix for which an inverse exists is the identity matrix. Therefore, the 
statement is reasonable.

[2 marks]
1 mark for providing a valid comment relating to the logic of statements 1–5.

1 mark for drawing a consistent conclusion regarding the reasonableness of statement 6.
Method 2:

It is true that the identity matrix is idempotent.

The statement is reasonable as all powers of the identity matrix will yield the identity matrix.
[2 marks]

1 mark for stating that powers of the identity matrix produce the identity matrix.
1 mark for drawing a consistent conclusion regarding the reasonableness of statement 6.



QCE Specialist Mathematics Units 1&2 Trial Examination Paper 1 Suggested Solutions

Copyright © 2023 Neap Education Pty Ltd	 QCE_SM12_P1_SS_2023	 17

c)	 A sufficient condition for inclusion in P is K2 = K.

K K2 �

�

�
�

�

�
�
�

�
�

�

�
� �

�

�
�

�

�
�

a b

c d

a b

c d

a b

c d

a2 + bc = a  (1)

ab + bd = b  (2)

ac + cd = c  (3)

bc + d  2 = d  (4)

Rearranging (2) gives:

ab bd b

b a d

� � �
� � �

0

1 0( )

As b ≠ 0: 

a d

a d

d a

� � �
� �

� �

1 0

1

1

Rearranging (1) gives:

bc a a

a a

c
a a

b

a a

b
b

� �
� �

�
� �

�

2

2

1

1

( )

( )
 OR  (As 0, this is valid.)

Hence, so that K ∈ P, it is required that d = 1 – a and c
a a

b
�

� 2
.

[5 marks]

1 mark for using the statement K2
 = K. Note: This mark may be implied  

by subsequent working.

1 mark for substituting 
a b

c d

�

�
�

�

�
�  into K and performing a multiplication of 

a b

c d

a b

c d

�

�
�

�

�
�
�

�
�

�

�
�   

to determine K2. Note: Multiplication may be flawed.

1 mark for attempting to equate the results of the matrix multiplication K2 with K itself,  

by equating corresponding elements. Note: Equations 1–4 do not all need  

to be present and correct. Look for evidence of at least one equation from 1–4.

1 mark for determining d = 1 – a.

1 mark for determining c
a a

b
�

� 2
.

Note: As this is a proof, responses will vary. Marks should be awarded for demonstrating  

the concepts identified in the marking guide.
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