

**Trial Examination 2020** 

# **Question and response booklet**

# **QCE Physics Units 3&4**

# Paper 1

| Student's Name: |  |  |
|-----------------|--|--|
|                 |  |  |
| Teacher's Name: |  |  |

#### Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

#### **General instructions**

- Answer all questions in this question and response booklet.
- QCAA-approved calculator permitted.
- QCAA formula sheet provided.
- Planning paper will not be marked.

#### Section 1 (20 marks)

• 20 multiple choice questions

#### Section 2 (25 marks)

7 short response questions

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2020 QCE Physics Units 3&4 examination.

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

#### **SECTION 1**

#### **Instructions**

- Choose the best answer for Questions 1–20.
- This section has 20 questions and is worth 20 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

|          | A | В | C | D |
|----------|---|---|---|---|
| Example: | • |   |   |   |

|     | A | В          | C | D                                       |
|-----|---|------------|---|-----------------------------------------|
| 1.  |   |            |   | $\bigcirc$                              |
| 2.  |   |            |   |                                         |
| 3.  |   |            |   |                                         |
| 4.  |   |            |   |                                         |
| 5.  |   |            |   | 000000000000000000000000000000000000000 |
| 6.  |   |            |   |                                         |
| 7.  |   |            |   |                                         |
| 8.  |   |            |   |                                         |
| 9.  |   |            |   |                                         |
| 10. |   | $\bigcirc$ |   |                                         |
| 11. |   |            |   |                                         |
| 12. |   | $\bigcirc$ |   |                                         |
| 13. |   |            |   |                                         |
| 14. |   |            |   |                                         |
| 15. |   | $\bigcirc$ |   |                                         |
| 16. |   |            |   |                                         |
| 17. |   |            |   |                                         |
| 18. |   | $\bigcirc$ |   | $\bigcirc$                              |
| 19. |   | $\bigcirc$ |   |                                         |
| 20. |   |            |   | $\bigcirc$                              |

TEQPHYS\_QA\_P1\_20.FM

#### **SECTION 2**

#### **Instructions**

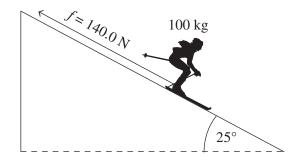
- Write using black or blue pen.
- Respond in paragraphs consisting of full sentences.
- If you need more space for a response, use the additional pages at the back of this booklet.
  - On the additional pages, write the question number you are responding to.
  - Cancel any incorrect response by ruling a single diagonal line through your work.
  - Write the page number of your alternative/additional response, i.e. See page ...
  - If you do not do this, your original response will be marked.
- This section has seven questions and is worth 25 marks.

| QUESTION 21 (2 marks)                                                                                                                            |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Define the term <i>meson</i> and identify what mesons consist of.                                                                                |                 |
|                                                                                                                                                  |                 |
|                                                                                                                                                  |                 |
|                                                                                                                                                  |                 |
|                                                                                                                                                  |                 |
|                                                                                                                                                  |                 |
|                                                                                                                                                  |                 |
| QUESTION 22 (3 marks)                                                                                                                            |                 |
| Thomson (1904) and Rutherford (1911) both proposed models of the atom.                                                                           |                 |
| Compare Thomson and Rutherford's models of the atom and explain the evidence that pointe replacing the other as the preferred model of the atom. | ed to one model |
|                                                                                                                                                  |                 |
|                                                                                                                                                  |                 |
|                                                                                                                                                  |                 |
|                                                                                                                                                  |                 |
|                                                                                                                                                  |                 |
|                                                                                                                                                  |                 |
|                                                                                                                                                  |                 |
|                                                                                                                                                  |                 |

| <b>QUESTION 23</b> | (3 marks)                                                       |
|--------------------|-----------------------------------------------------------------|
| Consider the proto | on, electron and neutron.                                       |
| Which one of the   | particles above was last to be discovered? Explain your answer. |
|                    |                                                                 |
|                    |                                                                 |
|                    |                                                                 |
|                    |                                                                 |
|                    |                                                                 |
|                    |                                                                 |

#### QUESTION 24 (8 marks)

One observation of the photoelectric effect that could not be explained by the wave model of light was 'no time delay'.


Outline two other observations associated with the photoelectric effect that cannot be accounted

for by the wave model of light. Explain how the observations support the particle model of light and identify the observation that the wave model would have predicted. Observation 1 Observation 2

| QUESTION 25 (2 marks)                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------|
| Explain the concept of relativity of simultaneity.                                                                    |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
| QUESTION 26 (4 marks)                                                                                                 |
| Explain how the formation of bright and dark bands in Young's double slit experiment supports he wave model of light. |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |

#### **QUESTION 27** (3 marks)

Beth is riding down a slope at an angle of  $25.0^{\circ}$ , as shown in the diagram below. The combined mass of Beth, her ski gear and her skis is 100.0 kg. The force of friction acting up the slope is 140.0 N



| Laiculate the magnitude of Beth's acceleration down the slope. Snow your working. |  |  |  |  |
|-----------------------------------------------------------------------------------|--|--|--|--|
|                                                                                   |  |  |  |  |
|                                                                                   |  |  |  |  |
|                                                                                   |  |  |  |  |
|                                                                                   |  |  |  |  |

Magnitude of acceleration =  $\frac{}{}$  m s<sup>-2</sup> (to 1 decimal place)

**END OF PAPER** 

| ADDITIONAL PAGE FOR STUDENT RESPONSES            | ADDITIONAL PAGE FOR STUDENT RESPONSES            |  |  |  |
|--------------------------------------------------|--------------------------------------------------|--|--|--|
| Write the question number you are responding to. | Write the question number you are responding to. |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |
|                                                  |                                                  |  |  |  |

| ADDITIONAL PAGE FOR STUDENT RESPONSES            |  |  |  |
|--------------------------------------------------|--|--|--|
| Write the question number you are responding to. |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |
|                                                  |  |  |  |



**Trial Examination 2020** 

Formula and data booklet

# **QCE Physics Units 3&4**

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

#### **FORMULAS**

### **Processing of data**

Percentage uncertainty (%) =  $\frac{\text{absolute uncertainty}}{\text{measurement}} \times 100$ 

Percentage error (%) =  $\left| \frac{\text{measured value - true value}}{\text{true value}} \right| \times 100$ 

| Heating pro | cesses |
|-------------|--------|
|-------------|--------|

$$T_{\rm K} = T_{\rm C} + 273$$

Q = mL

$$Q = mc\Delta T$$

 $\Delta U = Q + W$ 

$$\eta = \frac{\text{energy output}}{\text{energy input}} \times \frac{100}{1}\%$$

#### **Ionising radiation and nuclear reactions**

$$N = N_0 \left(\frac{1}{2}\right)^n$$

 $\Delta E = \Delta mc^2$ 

#### **Electrical circuits**

| Ι | = | q |
|---|---|---|
|   |   |   |

 $P = I^2 R$ 

$$V = \frac{W}{a}$$

 $V_t = V_1 + V_2 + \dots V_n$ 

$$P = \frac{W}{t}$$

 $R_t = R_1 + R_2 + \dots R_n$ 

$$R = \frac{V}{I}$$

 $I_t = I_1 + I_2 + \dots I_n$ 

$$P = VI$$

 $\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \dots \frac{1}{R_n}$ 

| Linear motion and force                            |                                                                                  |  |
|----------------------------------------------------|----------------------------------------------------------------------------------|--|
| v = u + at                                         | $W = \Delta E$                                                                   |  |
| $s = ut + \frac{1}{2}at^2$                         | W = Fs                                                                           |  |
| $v^2 = u^2 + 2as$                                  | $E_{\mathbf{k}} = \frac{1}{2}mv^2$                                               |  |
| $a = \frac{F_{\text{net}}}{m}$                     | $\Delta E_{\rm p} = mg\Delta h$                                                  |  |
| p = mv                                             | $\sum \frac{1}{2} m v_{\text{before}}^2 = \sum \frac{1}{2} m v_{\text{after}}^2$ |  |
| $\sum mv_{\text{before}} = \sum mv_{\text{after}}$ |                                                                                  |  |

| Waves                    |                                                                                           |
|--------------------------|-------------------------------------------------------------------------------------------|
| $v = f\lambda$           | $L = (2n - 1)\frac{\lambda}{4}$                                                           |
| $f = \frac{1}{T}$        | $\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} = \frac{n_2}{n_1}$ |
| $L = n\frac{\lambda}{2}$ | $I \propto \frac{1}{r^2}$                                                                 |

| Gravity and motion             |                                       |
|--------------------------------|---------------------------------------|
| $v_y = gt + u_y$               | $v = \frac{2\pi r}{T}$                |
| $s_y = \frac{1}{2}gt^2 + u_yt$ | $a_{\rm C} = \frac{v^2}{r}$           |
| $v_y^2 = 2gs_y + u_y^2$        | $F_{\text{net}} = \frac{mv^2}{r}$     |
| $v_x = u_x$                    | $F = \frac{GMm}{r^2}$                 |
| $s_x = u_x t$                  | $g = \frac{F}{m} = \frac{GM}{r^2}$    |
| $F_g = mg$                     | $\frac{T^2}{r^3} = \frac{4\pi^2}{GM}$ |

| Electromagnetism                                              |                                                             |
|---------------------------------------------------------------|-------------------------------------------------------------|
| $F = \frac{1}{4\pi \varepsilon_0} \frac{Qq}{r^2}$             | $F = q v B \sin \theta$                                     |
| $E = \frac{F}{q} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$ | $\phi = BA\cos\theta$                                       |
| $V = \frac{\Delta U}{q}$                                      | $emf = -\frac{n\Delta(BA_{\perp})}{\Delta t}$               |
| $B = \frac{\mu_0 I}{2\pi r}$                                  | $emf = -n\frac{\Delta\phi}{\Delta t}$                       |
| $B = \mu_0 nI$                                                | $I_{\rm p}V_{\rm p} = I_{\rm s}V_{\rm s}$                   |
| $F = BIL\sin\theta$                                           | $\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$ |

| Special relativity                                        |                                                                      |
|-----------------------------------------------------------|----------------------------------------------------------------------|
| $t = \frac{t_0}{\sqrt{\left(1 - \frac{v^2}{c^2}\right)}}$ | $p_{v} = \frac{m_{0}v}{\sqrt{\left(1 - \frac{v^{2}}{c^{2}}\right)}}$ |
| $L = L_0 \sqrt{\left(1 - \frac{v^2}{c^2}\right)}$         | $\Delta E = \Delta m c^2$                                            |

| Quantum theory                                                           |                         |
|--------------------------------------------------------------------------|-------------------------|
| $\lambda_{\max} = \frac{b}{T}$                                           | $\lambda = \frac{h}{p}$ |
| E = hf                                                                   | $n\lambda = 2\pi r$     |
| $E_{\mathbf{k}} = hf - W$                                                | $mvr = \frac{nh}{2\pi}$ |
| $\frac{1}{\lambda} = R \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$ |                         |

## PHYSICAL CONSTANTS AND UNIT CONVERSIONS

| Heating processes                     |                                                                    |
|---------------------------------------|--------------------------------------------------------------------|
| Latent heat of fusion for water       | $L_{\rm f} = 3.34 \times 10^5 \text{ J kg}^{-1}$                   |
| Latent heat of vaporisation for water | $L_{\rm v} = 2.26 \times 10^6  \text{J kg}^{-1}$                   |
| Specific heat capacity of ice         | $c_{\rm i} = 2.05 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$    |
| Specific heat capacity of steam       | $c_{\rm s} = 2.00 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$    |
| Specific heat capacity of water       | $c_{\rm w} = 4.18 \times 10^3 \mathrm{J  kg}^{-1} \mathrm{K}^{-1}$ |

| Ionising radiation and nuclear reactions |                                                     |
|------------------------------------------|-----------------------------------------------------|
| Atomic mass unit                         | $1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$   |
| Electron volt                            | $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$     |
| Mass of an alpha particle                | $m_{\alpha} = 6.6446572 \times 10^{-27} \text{ kg}$ |
| Mass of an electron                      | $m_{\rm e} = 9.1093835 \times 10^{-31} \rm kg$      |
| Mass of a neutron                        | $m_{\rm n} = 1.6749275 \times 10^{-27} \text{ kg}$  |
| Mass of a proton                         | $m_{\rm p} = 1.6726219 \times 10^{-27} \text{ kg}$  |
| Speed of light in a vacuum               | $c = 3 \times 10^8 \text{ m s}^{-1}$                |

| Electrical circuits   |                                       |
|-----------------------|---------------------------------------|
| Charge on an electron | $e = -1.60 \times 10^{-19} \text{ C}$ |

| Linear motion and force                   |                            |
|-------------------------------------------|----------------------------|
| Mean acceleration due to gravity on Earth | $g = 9.8 \text{ m s}^{-2}$ |

| Waves                         |                                    |
|-------------------------------|------------------------------------|
| Speed of sound in air at 25°C | $v_{\rm s} = 346 \text{ m s}^{-1}$ |

| Gravity and motion     |                                                          |
|------------------------|----------------------------------------------------------|
| Gravitational constant | $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ |
| Mass of the Earth      | $m_{\rm E} = 5.97 \times 10^{24} \text{ kg}$             |

| Electromagnetism   |                                                                            |
|--------------------|----------------------------------------------------------------------------|
| Coulomb's constant | $\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$ |
| Magnetic constant  | $\mu_0 = 4\pi \times 10^{-7} \ T A^{-1} \ \text{m}$                        |

| Quantum theory               |                                         |
|------------------------------|-----------------------------------------|
| Wien's displacement constant | $b = 2.898 \times 10^{-3} \text{ m K}$  |
| Planck's constant            | $h = 6.626 \times 10^{-34} \text{ J s}$ |
| Rydberg's constant           | $R = 1.097 \times 10^7 \text{ m}^{-1}$  |

## **SCIENTIFIC NOTATION**

| Ratio to basic unit | Prefix | Abbreviation |  |  |  |  |  |  |
|---------------------|--------|--------------|--|--|--|--|--|--|
| $10^{-18}$          | atto   | a            |  |  |  |  |  |  |
| 10 <sup>-15</sup>   | femto  | f            |  |  |  |  |  |  |
| 10 <sup>-12</sup>   | pico   | p            |  |  |  |  |  |  |
| 10 <sup>-9</sup>    | nano   | n            |  |  |  |  |  |  |
| 10 <sup>-6</sup>    | micro  | μ            |  |  |  |  |  |  |
| 10 <sup>-3</sup>    | milli  | m            |  |  |  |  |  |  |
| 10 <sup>-2</sup>    | centi  | С            |  |  |  |  |  |  |
| 10 <sup>-1</sup>    | deci   | d            |  |  |  |  |  |  |
| 10                  | deca   | da           |  |  |  |  |  |  |
| 10 <sup>2</sup>     | hecto  | h            |  |  |  |  |  |  |
| 10 <sup>3</sup>     | kilo   | k            |  |  |  |  |  |  |
| 10 <sup>6</sup>     | mega   | М            |  |  |  |  |  |  |
| 109                 | giga   | G            |  |  |  |  |  |  |
| 10 <sup>12</sup>    | tera   | Т            |  |  |  |  |  |  |

## LIST OF ELEMENTS BY NAME

| Name       | Atomic no. | Symbol | Name         | Ato |
|------------|------------|--------|--------------|-----|
| Hydrogen   | 1          | Н      | Krypton      | 36  |
| Helium     | 2          | Не     | Rubidium     | 37  |
| Lithium    | 3          | Li     | Strontium    | 38  |
| Beryllium  | 4          | Be     | Yttrium      | 39  |
| Boron      | 5          | В      | Zirconium    | 40  |
| Carbon     | 6          | С      | Niobium      | 41  |
| Nitrogen   | 7          | N      | Molybdenum   | 42  |
| Oxygen     | 8          | 0      | Technetium   | 43  |
| Fluorine   | 9          | F      | Ruthenium    | 44  |
| Neon       | 10         | Ne     | Rhodium      | 45  |
| Sodium     | 11         | Na     | Palladium    | 46  |
| Magnesium  | 12         | Mg     | Silver       | 47  |
| Aluminium  | 13         | Al     | Cadmium      | 48  |
| Silicon    | 14         | Si     | Indium       | 49  |
| Phosphorus | 15         | P      | Tin          | 50  |
| Sulfur     | 16         | S      | Antimony     | 51  |
| Chlorine   | 17         | Cl     | Tellerium    | 52  |
| Argon      | 18         | Ar     | Iodine       | 53  |
| Potassium  | 19         | K      | Xenon        | 54  |
| Calcium    | 20         | Ca     | Cesium       | 55  |
| Scandium   | 21         | Sc     | Barium       | 56  |
| Titanium   | 22         | Ti     | Lanthanum    | 57  |
| Vanadium   | 23         | V      | Cerium       | 58  |
| Chromium   | 24         | Cr     | Praseodymium | 59  |
| Manganese  | 25         | Mn     | Neodymium    | 60  |
| Iron       | 26         | Fe     | Promethium   | 61  |
| Cobalt     | 27         | Co     | Samarium     | 62  |
| Nickel     | 28         | Ni     | Europium     | 63  |
| Copper     | 29         | Cu     | Gadolinium   | 64  |
| Zinc       | 30         | Zn     | Terbium      | 65  |
| Gallium    | 31         | Ga     | Dysprosium   | 66  |
| Germanium  | 32         | Ge     | Holmium      | 67  |
| Arsenic    | 33         | As     | Erbium       | 68  |
| Selenium   | 34         | Se     | Thulium      | 69  |
| Bromine    | 35         | Br     | Ytterbium    | 70  |

| Name         | Atomic no. | Symbol |  |  |  |  |  |  |
|--------------|------------|--------|--|--|--|--|--|--|
| Krypton      | 36         | Kr     |  |  |  |  |  |  |
| Rubidium     | 37         | Rb     |  |  |  |  |  |  |
| Strontium    | 38         | Sr     |  |  |  |  |  |  |
| Yttrium      | 39         | Y      |  |  |  |  |  |  |
| Zirconium    | 40         | Zr     |  |  |  |  |  |  |
| Niobium      | 41         | Nb     |  |  |  |  |  |  |
| Molybdenum   | 42         | Мо     |  |  |  |  |  |  |
| Technetium   | 43         | Tc     |  |  |  |  |  |  |
| Ruthenium    | 44         | Ru     |  |  |  |  |  |  |
| Rhodium      | 45         | Rh     |  |  |  |  |  |  |
| Palladium    | 46         | Pd     |  |  |  |  |  |  |
| Silver       | 47         | Ag     |  |  |  |  |  |  |
| Cadmium      | 48         | Cd     |  |  |  |  |  |  |
| Indium       | 49         | In     |  |  |  |  |  |  |
| Tin          | 50         | Sn     |  |  |  |  |  |  |
| Antimony     | 51         | Sb     |  |  |  |  |  |  |
| Tellerium    | 52         | Te     |  |  |  |  |  |  |
| Iodine       | 53         | I      |  |  |  |  |  |  |
| Xenon        | 54         | Xe     |  |  |  |  |  |  |
| Cesium       | 55         | Cs     |  |  |  |  |  |  |
| Barium       | 56         | Ba     |  |  |  |  |  |  |
| Lanthanum    | 57         | La     |  |  |  |  |  |  |
| Cerium       | 58         | Ce     |  |  |  |  |  |  |
| Praseodymium | 59         | Pr     |  |  |  |  |  |  |
| Neodymium    | 60         | Nd     |  |  |  |  |  |  |
| Promethium   | 61         | Pm     |  |  |  |  |  |  |
| Samarium     | 62         | Sm     |  |  |  |  |  |  |
| Europium     | 63         | Eu     |  |  |  |  |  |  |
| Gadolinium   | 64         | Gd     |  |  |  |  |  |  |
| Terbium      | 65         | Tb     |  |  |  |  |  |  |
| Dysprosium   | 66         | Dy     |  |  |  |  |  |  |
| Holmium      | 67         | Но     |  |  |  |  |  |  |
| Erbium       | 68         | Er     |  |  |  |  |  |  |
| Thulium      | 69         | Tm     |  |  |  |  |  |  |
| Ytterbium    | 70         | Yb     |  |  |  |  |  |  |

# LIST OF ELEMENTS BY NAME (continued)

| Name         | e Atomic no. Symbol |    |               | Atomic no. | Syml |
|--------------|---------------------|----|---------------|------------|------|
| Lutetium     | 71                  | Lu | Americium     | 95         | Am   |
| Hafnium      | 72                  | Hf | Curium        | 96         | Cm   |
| Tantalum     | 73                  | Та | Berkelium     | 97         | Bk   |
| Tungsten     | 74                  | W  | Californium   | 98         | Cf   |
| Rhenium      | 75                  | Re | Einsteinium   | 99         | Es   |
| Osmium       | 76                  | Os | Fermium       | 100        | Fm   |
| Iridium      | 77                  | Ir | Mendelevium   | 101        | Md   |
| Platinum     | 78                  | Pt | Nobelium      | 102        | No   |
| Gold         | 79                  | Au | Lawrencium    | 103        | Lr   |
| Mercury      | 80                  | Hg | Rutherfordium | 104        | Rf   |
| Thallium     | 81                  | Tl | Dubnium       | 105        | Db   |
| Lead         | 82                  | Pb | Seaborgium    | 106        | Sg   |
| Bismuth      | 83                  | Bi | Bohrium       | 107        | Bh   |
| Polonium     | 84                  | Po | Hassium       | 108        | Hs   |
| Astatine     | 85                  | At | Meitnerium    | 109        | Mt   |
| Radon        | 86                  | Rn | Darmstadtium  | 110        | Ds   |
| Francium     | 87                  | Fr | Roentgenium   | 111        | Rg   |
| Radium       | 88                  | Ra | Copernicum    | 112        | Cn   |
| Actinium     | 89                  | Ac | Nihonium      | 113        | Nh   |
| Thorium      | 90                  | Th | Flerovium     | 114        | Fl   |
| Protactinium | 91                  | Pa | Moscovium     | 115        | Мс   |
| Uranium      | 92                  | U  | Livermorium   | 116        | Lv   |
| Neptunium    | 93                  | Np | Tennessine    | 117        | Ts   |
| Plutonium    | 94                  | Pu | Oganesson     | 118        | Og   |

| 18                             | <b>He</b> 4.00 | Ne 10                                            | 20.18                           | 18  | <b>A</b> F   | 98 | Ž  | 83.80 | 54    | Xe     | 131.29  | 98     | Ru         | (222.0)  | 118    | <b>5</b> 0  | (294)     |       | 71            | <b>L</b> u | 174.97  |           | 103    | <b>Lr</b> (262.1) |                   |        |  |    |                   |
|--------------------------------|----------------|--------------------------------------------------|---------------------------------|-----|--------------|----|----|-------|-------|--------|---------|--------|------------|----------|--------|-------------|-----------|-------|---------------|------------|---------|-----------|--------|-------------------|-------------------|--------|--|----|-------------------|
| L                              | 17             | 6 Щ                                              | 19.00                           | 17  | <b>5</b>     | 35 | Br | 79.90 | 23    | _      | 126.90  | 82     | At         | (210.0)  | 117    | <b>L</b>    | (534)     |       | 02            | Λρ         | 173.05  |           | 102    | <b>No</b> (259.1) |                   |        |  |    |                   |
|                                | 16             | 8 0                                              | 16.00                           | 16  | ဟ ္က         | 34 | Se | 78.97 | 25    | Te     | 127.60  | 84     | Po         | (210.0)  | 116    | <b>2</b> 65 | (583)     |       | 69            | Ę          | 168.93  |           | 101    | (258.1)           |                   |        |  |    |                   |
|                                | 15             | ^<br>Z                                           | 14.01                           | 15  | <b>a</b> 26. | 33 | As | 74.92 | 51    | Sp     | 121.76  | 83     | <u>.</u>   | 208.98   | 115    | Z ê         | (887)     |       | 89            | ш          | 167.26  |           | 100    | <b>Fm</b> (252.1) |                   |        |  |    |                   |
|                                | 14             | ပ                                                | 12.01                           | 14  | S &          | 32 | Ge | 72.63 | 20    | Sn     | 118.71  | 82     | Pb         | 207.2    | 114    | <b>T</b> 8  | (583)     |       | 29            | 9          | 164.93  |           | 66     | (252.1)           |                   |        |  |    |                   |
|                                | 13             | <b>B</b>                                         | 10.81                           | 13  | <b>A</b>     | 31 | Ga | 69.72 | 49    |        | 114.82  | 8      | F          | 204.38   | 113    | 4           | (784)     |       | 99            | ^          | 162.50  |           | 86     | (252.1)           |                   |        |  |    |                   |
|                                |                |                                                  |                                 |     | 1,           | 30 | Zn | 65.38 | 48    | PS     | 112.41  | 8      | Hg         | 200.59   | 112    | 5           | (687)     |       | 65            | <u>_</u>   | 158.93  |           | 6      | <b>BK</b> (249.1) |                   |        |  |    |                   |
| SINTS                          |                |                                                  |                                 |     | -            | 29 | Cn | 63.55 | 47    | Ag     | 107.87  | 79     | Au         | 196.97   | 111    | <b>R</b> g  | (7/7)     |       | 64            | P9         | 157.25  |           | 96     | <b>Cm</b> (244.1) |                   |        |  |    |                   |
| E ELEME                        |                | atomic number<br>symbol<br>relative atomic mass* | symbol<br>relative atomic mass* | *ss |              |    |    |       |       | Ç      | 78      | Z      | 58.69      | 46       | Pd     | 106.42      | 78        | £     | 195.08        | 110        | Ds      | (187)     |        | 3                 | En                | 151.96 |  | 95 | <b>Am</b> (241.1) |
| LE OF TH                       | 3              |                                                  |                                 |     |              | a  | 27 | Co    | 58.93 | 45     | Rh      | 102.91 | 11         | <u>-</u> | 192.22 | 109         | Ž         | (502) |               | 69         | Sm      | 150.36    |        | 94                | <b>Pu</b> (239.1) |        |  |    |                   |
| PERIODIC TABLE OF THE ELEMENTS |                | symbol                                           | relative                        |     | 0            | 26 | Fe | 55.85 | 44    | Ru     | 101.07  | 9/     | 08         | 190.23   | 108    | HS          | (1.602.1) |       | 6             | Pm         | (146.9) |           | 93     | <b>Np</b> (237.0) |                   |        |  |    |                   |
| PERIO                          | KEY            | I                                                | 1.01                            |     | ۲            | 25 | Z  | 54.94 | 43    | C      | (98.91) | 75     | Re         | 186.21   | 107    | <b>Bh</b>   | (704.1)   |       | 9             | P<br>Z     | 144.24  |           | 92     | 238.0             |                   |        |  |    |                   |
|                                |                |                                                  |                                 |     | ď            | 24 | ن  | 52.00 | 42    | Mo     | 95.95   | 74     | >          | 183.84   | 106    | Sg          | (203.1)   |       | 59            | P          | 140.91  |           | 91     | <b>Pa</b>         |                   |        |  |    |                   |
|                                |                |                                                  |                                 |     | Ľ            | 23 | >  | 50.94 | 41    | S<br>P | 92.91   | 73     | Та         | - 1      |        |             | - 1       |       | 22            | Ce         | 140.12  |           | 6<br>i | <b>Th</b> 232.0   |                   |        |  |    |                   |
|                                |                |                                                  |                                 |     | <            | 22 | F  | 47.87 | 40    | Zr     | 91.22   | 72     | Ŧ          | 178.49   | 104    | <b>Æ</b>    | (701.1)   | -     | Lathanolds 57 | La         | 138.91  | Actinoids | 88     | <b>Ac</b> (227.0) |                   |        |  |    |                   |
|                                |                |                                                  |                                 |     | c            | 21 | Sc | 44.96 | 33    | >      | 88.91   | 27-71  | Lathanoids |          | 89-103 | Actinoids   |           | -<br> | - <u>-</u>    | ^          |         |           |        | ↑<br> <br> -      |                   |        |  |    |                   |
|                                | 2              | Be 4                                             | 9.01                            | 12  | <b>N</b>     |    | ٽ  |       | 38    | Š      | 87.62   | 26     | Ba         | 137.33   | 88     | <b>B</b>    | (1.027)   |       |               | _          |         |           |        |                   |                   |        |  |    |                   |
| -                              | <b>T</b> 1.0.1 | E 3                                              | 6.94                            | 11  | <b>S</b> %   | 19 | ¥  | 39.10 | 37    | Rb     | 85.47   | 22     | Cs         | 132.91   | 87     | <b>4</b>    | (223.0)   |       |               |            |         |           |        |                   |                   |        |  |    |                   |

Groups are numbered according to IUPAC convention 1–18. \*Values in brackets are for the isotope with the longest half-life.