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QUESTION1 C

Let X be the continuous random variable of butterfly wingspan.

P(2.5<X <7.5)= 41—25

9
1

3
5
=0.6

QUESTION2 B

y :3e4x

y' =124

Atx=0,y =12.

Ly=12x+c¢

Atx=0,y=3.

23=12x0+c¢
c=3

Therefore, y = 12x + 3.

QUESTION3 C

C is correct. Compared to the natural logarithmic function y = In(x), y = In(x — 3) — 1 has been shifted 3 units
to the right and 1 unit down, and has a vertical asymptote at x = 3. Only option C has an asymptote at x = 3.

A is incorrect. This is the graph of y = In(x + 3) — 1.

B is incorrect. This is the graph of y = —In(x + 3) — 1.

D is incorrect. This is the graph of y = 0.5¢" — 2.

QUESTION4 D

Given that J.Zxcos(x 2 ) X eSin(x 2 )dx = eSin(x 2) pe

. 2
J.éx cos (x 2 ) X esm(x )dx

. 2
%J.Zx cos(x2 ) xesm(x )dx

Note that the choice of constant does not matter, but d was chosen to distinguish it from c.
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QUESTIONS C

2
EX)= onf(x)dx

2.2
02

2
_1M
21 3

0

(2°-0?)

1
6
4
3

QUESTION 6 A
var(x)=E(x ) -[E)]

18

QUESTION7 A
f)= —%cos(3x)

s f(x) =—%x(—sin(3x))x3

=sin(3x)
Since it is negative, 3x is in quadrants 3 and 4.
Tr 1lz 197
S.3x=—or——or—or...
6 6 6
Tr 117 197
X=——0r — or —
18 18 18
T 1lr
X=—,—
18 18
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QUESTIONS B
2 2r

I 3 cos(2x)dx = [%sin@x)};
z 4

1 2
= E[Sm(zx)]g
3

Aol
55

QUESTIONY9 A
This is a Bernoulli distribution.
E(X)=np
= i x1
10
1

10
o(X)=+/np(1-p)

QUESTION 10 B

B is correct. This is the best option for representing the cumulative distribution function. The introduction
of another variable, 7, makes the expression clearer.

A is incorrect. The use of x as both the upper bound and the variable of integration is not the best
mathematical notation to use.

C is incorrect. This option includes the derivative of the integrand, which is not required.

D is incorrect. This option is the derivative of the integrand.

4 QCE_MM34_P1_SS_2023 Copyright © 2023 Neap Education Pty Ltd



QCE Mathematical Methods Units 3&4 Trial Examination Paper 1 Suggested Solutions

SECTION 2

QUESTION 11 (4 marks)

a) In(x)+In(x +1)=1n20
In(x(x +1))=In20
x(x+1)=20
X2 +x-20=0
x+5x-4)=0
By the null factor law, x =5 or x = 4.

However, only x = 4 can be substituted in the original equation. Therefore, x = 4.
[2 marks]
1 mark for using logarithmic laws to simplify to the quadratic equation.
1 mark for solving for the value of x.

b) e4><((ex_2)2 —elz)zo

e ><(e2"'74 *612):0

- 2
62,\ 4+4 761_+4 -0

o2 _ 16
2x =16
x=38

[2 marks]

1 mark for using index laws to simplify to the simple linear equation.
Note: Allow for implied working.

1 mark for solving for the value of x.

QUESTION 12 (3 marks)
a) y = cos(x) x In(x)
Let f= cos(x) and g = In(x).
y'=fe'+f's
= (cos(x)xl] —(sin(x)xIn(x))
X

= cos(x) _ (sin(x) x1n(x))

[1 mark]

1 mark for determining the derivative using the product rule.
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sin(x)
\' =

i e2*

b)

Let f=sin(x) and g e
prot 8-/8

2

8
(cos(x)xezx )— (Sifl(x)>< 2¢* )
(e2x )2

er

[2 marks]

1 mark for determining the unsimplified derivative using either the product
or quotient rule.

1 mark for determining the simplified derivative.

QUESTION 13 (6 marks)
3

a) area = J- 27 -3x%dx
-3

[2 marks]
1 mark for showing correct bounds.
1 mark for writing an appropriate definite integral.

3 2
b) area = I 27—-3x"dx
-3

3
=[27x —x3]
-3

=(27><3—33)—(27x(—3)—(—3)3)
=(27x3-27)—(27x(-3)+27)

=108 units”
[2 marks]

1 mark for integrating both terms.
1 mark for determining the area.
Note: Consequential on answer to Question 13a).

c) Let Ax be the width of a trapezoid.
Ax
T(f (=3)+2f (=2)+2f (=) +2f (0)+2f () +2f (2) +f (3))
_0+2x15+2x24+2x27+2x24+2x15+0

2

area ~

=105 units>

[2 marks]

1 mark for using an appropriate formula and identifying that the function should
be evaluated at x = -3, -2, -1, 0, 1, 2, 3.

1 mark for estimating the area.
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QUESTION 14 (5 marks)

a) EX)=np
=3x0.5
=1.5 gold balls

[1 mark]

1 mark for determining the expected value.

b)  Var(X)=np(l-p)

=3Xx—X—

2 2
=0.75

s.o=+0.75

[1 mark]

1 mark for determining the standard deviation using the rule for variance
and taking the square root.

c) Method 1:
P(not winning a prize) = P(X =0)

(3) o, 3
—(OJP (I-p)
3/

2

_1

8
P(winning a prize) =P(X 21)
=1-P(X =0)
1

:1——
8

7
3
Method 2:

P(winning a prize) =P(X =1)+ P(X =2)+P(X =3)

(3 1, 2 (3 2 L (3) 3, 0
—(JP (1-p) +(2jp (1-p) +[3JP (1-p)

00|

7 9

8 10
Thus, the vendor’s claim is incorrect, as less than 90% of participants will win a prize.

[3 marks]

1 mark for using an appropriate strategy to determine the probability.
1 mark for determining the probability.
1 mark for making an appropriate conclusion regarding the vendor’s claim.
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QUESTION 15 (4 marks)

a) z= X u
o
For Mathematics:
~_70-45
T
25
15
_3
3
For Chemistry:
76-51
X =
20
25
20
_2
4
Aleyna’s z-score for Mathematics is higher, which means that she achieved a comparatively better
result in the Mathematics competition.
[3 marks]
1 mark for determining the Mathematics z-score.
1 mark for determining the Chemistry z-score.
1 mark for determining that Aleyna achieved a better result in Mathematics.
b) z= X -u
o
05=X—%
15
X =525
Therefore, a student would need to score more than 52.5 marks to receive a distinction.
[1 mark]
1 mark for determining the minimum score.
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QUESTION 16 (6 marks)
Graph 1: y = acosx
Graph 2: y = asinx
Points of intersection:
acosx =asinx
COSX =sinx

The intersections occur for x in quadrants 1 and 3.

T 3
Therefore, x =— and —.
i
shaded area = I 43ﬂ acosx —asinxdx
4

i
:aJ- 4 cosx —sinxdx
kY4
4

T

= a[sinx + cosx] 43ﬂ

_da

V2

Thus:

[6 marks]

1 mark for determining the functions for both graphs.

1 mark for determining the x-values for both points of intersection.
1 mark for setting up the definite integral.

1 mark for integrating the integrand.

1 mark for using trigonometric substitution to determine the area
of the shaded region in terms of a.

1 mark for determining the value of a.

Note: Accept follow-through errors.
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QUESTION 17 (6 marks)
y=In (x2 + 2)
2x

x2+2

., 4-2x?

(x 2, 2)2
Determining the critical points gives:
2x
x2+2
=0
Therefore, x = 0 is a critical point.

!

y:

’

),’ =

Categorising the critical point gives:

4-2x0%
When x =0, y"= 22229 .

(02+2)°

Therefore, by the second derivative test, there is a local minimum when x = 0.

Determining the y-intercept gives:
Let x=0.
y=In(2)
Therefore, both the y-intercept and local minimum occur at (0, In(2)).
Determining the x-intercept(s) gives:
Lety=0.
0=In(x2+2)
1=x2+2
This has no solution; therefore, there are no x-intercepts.
Determining the x-coordinate of the points of inflection gives:
,  4-2x?

Y 7

(x 2 Z)Q
=0
S 4-2x%=0
X = i\/i
Determining the y-coordinate of the points of inflection gives:
y=In(x2+2)

_inl((42)" +2)
=In(2+2)
=1n(4)

(continues on next page)
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(continued)

(—v2, In(4)) (V2. In(4))
(0, In(2))

A

=Y

[6 marks]

1 mark for determining the first derivative.

1 mark for determining the second derivative.

1 mark for determining that there is a critical point at x = 0 and using the

second derivative test to categorise the critical point as a local minimum.

1 mark for determining the y-coordinate of the local minimum.

1 mark for determining the coordinates of both points of inflection.

1 mark for sketching a graph with the correct shape and all relevant coordinates.
Note: The graph should be symmetrical and should not have any local maxima.
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QUESTION 18 (6 marks)
For example:

The area of each triangle is 1 unit’.

Let x and y be the lengths of the two interior sides and z be the length of a side of the octagon.

C A
The angle at A is % =45°.

1, .
area=1= Ebc sin(A)

1= %xy sin(45)

1

1
_x [
2 yﬁ
—LX)Y
242
Xy =22
22
y —_

X

1=

1

Determining the length of z gives:

c? =a* +b? —2abcos(C)
2

72 =x? +y2 —2xycos(A)

2
Zz =x2 +(&J —2(2&)005(45)
X

2 8 1

=x +——2(2\/§)><—
x? V2

=x2+i—4

x2

(continues on next page)
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(continued)

Minimising z~ will also minimise z:

2
Iz 8
T —ox-2x
dx x°
16
=2x - -
X
Setting the derivative equal to 0 to determine the critical points gives:
16
2x — E =0
X
16
2x = 73
X
et =8
1
x =84
3
=24 units
Using the second derivative test to show that x minimises the value of zz gives:
2.2
d 48
ZZ =2+ > 0
dx X

Since the second derivative (at the critical point) is greater than 0, by the second derivative test, it is a local
minimum. Since z2 is minimised, z is minimised and thus the perimeter of the octagon is minimised.

Showing that x =y gives:
3

x =24 units

22
y:_

[\
[SERROCIRSY

)
N W R w

AW

=2
&
=24
=Xx
Since x =y, the triangle ABC is isosceles.
[6 marks]

1 mark for setting up an accurate equation in terms of one variable for either z, z2

or the entire perimeter.

1 mark for determining the derivative for the expression for z, zz or the perimeter.

1 mark for determining the critical value.

1 mark for using an appropriate method to categorise the critical point as a local minimum.
1 mark for using an appropriate method to show that the triangle is isosceles.

1 mark for showing clear and logical organisation of working.

Note: Accept follow-through errors.
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QUESTION 19 (5 marks)
2sinh(Int)
at)=

1n(2cosht—eil)

Using the definitions of the hyperbolic functions to simplify the numerator and denominator gives

the following.
Numerator:
elnt _e—lnz
2sinh(In?) =2 x T
_ Int e—lnt
1
=f—-
t

Denominator:

ln(2cosht —e! ) = ln[2 X

ST
t

Integrating to determine the velocity v(f) and displacement x(¢) functions gives the following.

v(z):_’.l—lzdt
t

1
=t+-+c
t
. 1
Since v(1) =2, v(1)=2:1+1+c.
Therefore, c =0

(continues on next page).
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(continued)
Thus:

1
v(t)=t+—, for t >0 seconds
t

x(t):J.v (t)dt

1
:J-H—fdt
I
l2
=—+Int+d
4 4 2
41 il 1
Since x(N=—" x()=—"— LInl+d.
2 2 2
4

Therefore, d =e7.

2 8_4
ThUS, )C(T):*‘Flnf‘i‘T.

=cosh(4)+2 m
[5 marks]
1 mark for simplifying the expression for the acceleration function. Note: This needs
to be simplified so that it can be easily integrated.
1 mark for integrating for the velocity function and determining the constant
of integration.
1 mark for integrating for the displacement function.
1 mark for determining the constant of integration for the displacement function.
1 mark for determining the displacement at ¢ seconds using appropriate units
and an appropriate hyperbolic function.

Note: Accept follow-through errors.
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