

Trial Examination 2021

Question and response booklet

QCE Chemistry Units 3&4

Paper 1

Student's Name: _		
Teacher's Name:		

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- QCAA-approved calculator permitted.
- Formula and data booklet provided.
- Planning paper will not be marked.

Section 1 (25 marks)

25 multiple choice questions

Section 2 (35 marks)

8 short response questions

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2021 QCE Chemistry Units 3&4 Written Examination.

SECTION 1

Instructions

- Choose the best answer for Questions 1–25.
- This section has 25 questions and is worth 25 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

	A	В	С	D
Example:				

	A	В	С	D
1.		\bigcirc		\bigcirc
2.		\bigcirc		\bigcirc
3.		\bigcirc		\bigcirc
4.		\bigcirc		\bigcirc
4. 5.		\bigcirc		\bigcirc
6. 7.	0	\bigcirc	0	\bigcirc
7.		\bigcirc		\bigcirc
8.		\bigcirc		\bigcirc
9.		\bigcirc		\bigcirc
10.		\bigcirc		\bigcirc
11. 12.	0	\bigcirc	0	\bigcirc
12.		\bigcirc		\bigcirc
13.		\bigcirc		\bigcirc
14.		\bigcirc		\bigcirc
15.		\bigcirc		\bigcirc
16.	0	\bigcirc	\circ	\bigcirc
17.		\bigcirc		\bigcirc
18. 19.		\bigcirc		\bigcirc
19.		\bigcirc		\bigcirc
20.		\bigcirc		\bigcirc
21.				
22.	0	\bigcirc	\bigcirc	\bigcirc
23.		\bigcirc		\bigcirc
23. 24.	0	\bigcirc	\circ	\bigcirc
25.	0	\bigcirc		\bigcirc

SECTION 2

Instructions

- Write using black or blue pen.
- If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.
- This section has eight questions and is worth 35 marks.

QUESTION 26 (4 marks)

An aqueous solution containing 1.0 M copper(II) nitrate and 1.0 M magnesium nitrate was electrolysed using inert electrodes. It was found that pure copper metal was deposited on one electrode.

elec	trolysis proceeded.	
Usir	ag a balanced half-equation, explain why this happened.	[2 marks
	magnesium metal was deposited during the electrolysis.	
	ly your understanding of the standard reduction potentials table to explain magnesium metal could not be deposited in this type of electrolysis experiment.	[2 marks

QUESTION 27 (4 marks)

The aluminum—air battery is a promising power source for electric motor cars. The main features of the battery are shown below.

When the cell operates, the aluminum loses electrons and dissolves, forming aluminum hydroxide. The aluminum plate must be periodically replaced. One reaction in this cell is represented by the following half-equation.

$$Al(s) + 3OH^{-}(aq) \rightarrow Al(OH)_{3}(s) + 3e^{-}$$

- a) Identify the polarity (positive or negative) of the aluminium electrode. [1 mark]
- b) Write a balanced half-equation for the reaction occurring at the surface of the porous metal where oxygen is reduced. [1 mark]
- c) i) Identify one way in which the aluminum-air battery resembles a fuel cell. [1 mark]
 - ii) Identify one way in which the aluminum–air battery differs from a fuel cell. [1 mark]

QUESTION 28 (6 marks)

Ammonia gas reacts with oxygen gas according to the following chemical equation.

$$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$$
 $\Delta H = -900 \text{ kJ mol}^{-1}$

In one experiment at a particular temperature, 0.300 mol of ammonia gas was mixed with 0.400 mol of oxygen gas in a sealed 2.00 L container and was allowed to reach equilibrium. 0.200 mol of nitrogen oxide gas was present in the equilibrium mixture.		
Calculate the amount (in mol) of $\mathrm{NH_3}$, $\mathrm{O_2}$ and $\mathrm{H_2O}$ in the equilibrium mixture your working.	. Snow [3 mark	
Amount of NH ₃ at equilibrium = mol (to three	e significant figures)	
Amount of O_2 at equilibrium = mol (to three s		
Amount of H ₂ O at equilibrium = mol (to three		
Apply your understanding of Le Châtelier's principle to predict the effect that an increase in pressure would have on the position of equilibrium for this reac Explain your reasoning.		

QUESTION 29 (4 marks)

The flow chart below shows a pathway for the production of ethanol.

cellulose	reaction 1	glucose	reaction 2	ethanol
-----------	------------	---------	------------	---------

a)	i)	Identify a likely source of cellulose.	[1 mark]
	ii)	Identify the type of chemical reaction labelled as reaction 1 in the flow chart above.	[1 mark]
b)	Read	ction 2 is known as fermentation and occurs in the presence of a yeast enzyme.	
	Desc	cribe two characteristics of enzymes.	[2 marks]
OU	ESTIC	ON 30 (4 marks)	
_		ations, describe a reaction pathway for the two-step conversion of 1-bromopropane	
		CH ₂ Br) to 1-butanamine. Use semi-structural formulas for organic compounds and	include
	2	reagents in your response.	
	6 · · · · · · · · · · · · · · · · · · ·		

QUESTION 31 (5 marks)

A student wanted to construct a galvanic cell under standard conditions with cell voltage of exactly 0.84 V, using the $\text{C1}_2/\text{C1}^-$ half-cell. A partly labelled diagram of the planned cell is shown below.

a) Calculate the standard reduction potential (E°) for half-cell II.

[1 mark]

Standard reduction potential = ______ V (to two significant figures)

b) Complete the diagram above by adding the following features.

- [3 marks]
- an arrow in the box directly above the voltmeter to indicate the direction of movement of electrons
- the composition of the electrolyte in half-cell II
- the composition of the electrode in half-cell II
- c) A salt bridge can be made using a piece of filter paper soaked in a particular liquid.

Identify **one** property of the liquid that is required for its use in making a salt bridge.

[1 mark]

QUESTION 32 (4 marks)

The simplified mass spectrum of a compound with empirical formula $\mathrm{C}_2\mathrm{H}_5$ is shown below.

Analyse the spectrum to deduce the semi-structural formula for the molecule. Explain your reasoning.

QUESTION 33 (4 marks)

Electrophoresis can be used to separate a mixture of amino acids containing valine. A sample of the mixture for separation is placed on a paper and an electric field is applied. This set-up is shown in the diagram below.

Valine migrates towards the anode (+) if the buffer solution has a high pH, and towards the cathode (–) if the buffer solution has a low pH.

Explain why this occurs.		

END OF PAPER

ADDITIONAL PAGE FOR STUDENT RESPONSES				
Write the question number you are responding to.				
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			

ADDITIONAL PAGE FOR STUDENT RESPONSES				
Write the question number you are responding to.				

ADDITIONAL PAGE FOR STUDENT RESPONSES				
Write the question number you are responding to.				
	_			
	_			
	_			
	_			
	_			
	_			
	_			
	_			

Trial Examination 2021

Formula and data booklet

QCE Chemistry Units 3&4

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data

Absolute uncertainty of the mean $\Delta \overline{x} = \pm \frac{(x_{\text{max}} - x_{\text{min}})}{2}$

Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times \frac{100}{1}$

Percentrage error (%) = $\left| \frac{\text{measured value - true value}}{\text{true value}} \right| \times 100$

Chemical reactions – reactants, products and energy change

 $\Delta H = H_{\text{(products)}} - H_{\text{(reactants)}}$

 $\Delta H = \sum (\text{bonds broken}) - \sum (\text{bonds formed})$

 $Q = mc\Delta T$

Percentage yield (%) = $\frac{\text{experimental yield}}{\text{theoretical yield}} \times \frac{100}{1}$

Aqueous solutions and acidity

Molarity = $\frac{\text{moles of solute } (n)}{\text{volume of solution } (V)}$

Chemical equilibrium systems

 $K_c = \frac{\left[C\right]^c}{\left[A\right]^a} \frac{\left[D\right]^d}{\left[B\right]^b} \text{ for the reaction: aA + bB } \rightleftharpoons cC + dD$

$$K_{\rm w} = [{\rm H}^+][{\rm OH}^-]$$

$$pH = -\log_{10}\left[H^+\right]$$

$$pOH = -\log_{10} [OH^{-}]$$

$$K_{\rm w} = K_{\rm a} \times K_{\rm b}$$

$$K_{\rm a} = \frac{\left[{\rm H_3O}^+\right]\left[{\rm A}^-\right]}{\left[{\rm HA}\right]}$$

$$K_{\rm b} = \frac{\left[{\rm BH}^+\right]\left[{\rm OH}^-\right]}{\left[{\rm B}\right]}$$

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

Physical constants and unit conversions	
Absolute zero	$0 \text{ K} = -273^{\circ}\text{C}$
Atomic mass unit	1 amu = 1.66×10^{-27} kg
Avogadro's constant	$N_{\rm A} = 6.02 \times 10^{23} \text{ mol}^{-1}$
Ideal gas constant	$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
Ionic product constant for water (at 298 K)	$K_{\rm w} = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$
Molar volume of an ideal gas (at STP)	$2.27 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1} = 22.7 \text{ dm}^3 \text{ mol}^{-1}$
Specific heat capacity of water (at 298 K)	$c_{\rm w} = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$
Standard temperature and pressure (STP)	273 K and 100 kPa
Volume and capacity conversions	$1 \text{ dm}^3 = 1 \times 10^{-3} \text{ m}^3 = 1 \times 10^3 \text{ cm}^3 = 1 \text{ L}$

LIST OF ELEMENTS

Name	Atomic no.	Symbol		
Hydrogen	1	Н		
Helium	2	Не		
Lithium	3	Li		
Beryllium	4	Be		
Boron	5	В		
Carbon	6	С		
Nitrogen	7	N		
Oxygen	8	О		
Fluorine	9	F		
Neon	10	Ne		
Sodium	11	Na		
Magnesium	12	Mg		
Aluminium	13	Al		
Silicon	14	Si		
Phosphorus	15	P		
Sulfur	16	S		
Chlorine	17	Cl		
Argon	18	Ar		
Potassium	19	K		
Calcium	20	Ca		
Scandium	21	Sc		
Titanium	22	Ti		
Vanadium	23	V		
Chromium	24	Cr		
Manganese	25	Mn		
Iron	26	Fe		
Cobalt	27	Со		
Nickel	28	Ni		
Copper	29	Cu		
Zinc	30	Zn		
Gallium	31	Ga		
Germanium	32	Ge		
Arsenic	33	As		
Selenium	34	Se		
Bromine	35	Br		

Name	Atomic no.	Symbol		
Krypton	36	Kr		
Rubidium	37	Rb		
Strontium	38	Sr		
Yttrium	39	Y		
Zirconium	40	Zr		
Niobium	41	Nb		
Molybdenum	42	Mo		
Technetium	43	Тс		
Ruthenium	44	Ru		
Rhodium	45	Rh		
Palladium	46	Pd		
Silver	47	Ag		
Cadmium	48	Cd		
Indium	49	In		
Tin	50	Sn		
Antimony	51	Sb		
Tellerium	52	Те		
Iodine	53	Ι		
Xenon	54	Xe		
Cesium	55	Cs		
Barium	56	Ba		
Lanthanum	57	La		
Cerium	58	Ce		
Praseodymium	59	Pr		
Neodymium	60	Nd		
Promethium	61	Pm		
Samarium	62	Sm		
Europium	63	Eu		
Gadolinium	64	Gd		
Terbium	65	Tb		
Dysprosium	66	Dy		
Holmium	67	Но		
Erbium	68	Er		
Thulium	69	Tm		
Ytterbium	70	Yb		

LIST OF ELEMENTS (CONTINUED)

Name	Atomic no.	Symbol		
Lutetium	71	Lu		
Hafnium	72	Hf		
Tantalum	73	Та		
Tungsten	74	W		
Rhenium	75	Re		
Osmium	76	Os		
Iridium	77	Ir		
Platinum	78	Pt		
Gold	79	Au		
Mercury	80	Hg		
Thallium	81	Tl		
Lead	82	Pb		
Bismuth	83	Bi		
Polonium	84	Po		
Astatine	85	At		
Radon	86	Rn		
Francium	87	Fr		
Radium	88	Ra		
Actinium	89	Ac		
Thorium	90	Th		
Protactinium	91	Pa		
Uranium	92	U		
Neptunium	93	Np		
Plutonium	94	Pu		

NT.		G 1.1
Name	Atomic no.	Symbol
Americium	95	Am
Curium	96	Cm
Berkelium	97	Bk
Californium	98	Cf
Einsteinium	99	Es
Fermium	100	Fm
Mendelevium	101	Md
Nobelium	102	No
Lawrencium	103	Lr
Rutherfordium	104	Rf
Dubnium	105	Db
Seaborgium	106	Sg
Bohrium	107	Bh
Hassium	108	Hs
Meitnerium	109	Mt
Darmstadtium	110	Ds
Roentgenium	111	Rg
Copernicium	112	Cn
Nihonium	113	Nh
Flerovium	114	Fl
Moscovium	115	Мс
Livermorium	116	Lv
Tennessine	117	Ts
Oganesson	118	Og

-						PERIO	IIC TARI	E OF THE	DERIODIC TARIE OF THE EI EMENTS	S _L						l	18
-) -							2
L 5:	2					KEY	Г					13	14	15	16	17	16
က	4					:	1 atomic number	umber				S	9	7	8	6	10
=	Be					T	symbol		á			Ω	S	2	0	ш	Ne
6.94	9.01					1.01	relative	relative atomic mass*	k			10.81	12.01	14.01	16.00	19.00	20.18
11	12										1	13	14	15	16	17	18
Na	M											A	Si	۵	S	5	Ar
22.99	24.31	က	4	2	9	7	œ	6	10	=	12	26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
¥	Ca	Sc	j	>	ວັ	Z Z	Fe	Ç	Z	Cn	Zu	Ga	Ge	As	Se	Ŗ	<u>\</u>
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54
Rb	Sr	>	Zr	N	Mo	٦ ۲	Ru	묎	Pd	Aq	S	드	Sn	Sb	Te	_	Xe
85.47	87.62	88.91	91.22	92.91	95.95	(98.91)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	99	57-71	72	73	74	75	9/	77	78	79	80	81	82	83	84	85	98
Cs	Ba	Lanthanoids	Ħ	Тa	>	Re	08	<u>-</u>	£	Au	Hġ	F	Pb	<u>.</u>	Po	At	Ru
132.91	137.33		178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(210.0)	(210.0)	(222.0)
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Ŧ	Ba	Actinoids	Æ	Op	Sg		Hs	Ĭ	Ds	Rg	Ç	Z	ᇤ	Mc	^	Ls	0 0
(223.0)	(226.1)		(261.1)	(262.1)	(263.1)	(264.1)	(265.1)	(268)	(281)	(272)	(282)	(284)	(289)	(288)	(293)	(294)	(294)
			Lanthanoids														
			22	28	29	09	61	62	63	64	65	99	67	99	69	70	71
		^ - + - 	La	Ce	Ą	PZ	Pm	Sm	n	P G	유	D	유	ш П	E	Λb	_
			138.91	140.12	140.91	144.24	(146.9)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
			Actinoids														
			88	90	91	92	93	94	95	96	97	86	66	100	101	102	103
		 	Ac	드	Ра	_	S	Pu	Am	Cm	B	Ç	Es	Fm	Βd	No	۲
			(227.0)	232.0	231.0	238.0	(237.0)	(239.1)	(241.1)	(244.1)	(249.1)	(252.1)	(252.1)	(252.1)	(258.1)	(259.1)	(262.1)

Groups are numbered according to IUPAC convention 1–18. *Values in brackets are for the isotope with the longest half-life.

18	He ²	37		Ne 10	62	5	Ar	101		Kr ³⁶	116		Xe ⁵⁴	136				
l			17	6 "	60 133 (1–)	ţ	_ 	100		Br 35			l 53	136	(-L) 077.			
			16	° 0	64 140 (2–)		S			Se 34			Te ⁵²	137	(-2) 1.77			
			15	N 7	71 146 (3–)	Ļ	<u>ေ</u>	109	38 (5 +)	AS 33			\mathbf{Sb}^{51}	140	/6 (3+)			
			14	ں و	75 16 (4+)	7.7	Si [‡]			Ge 32	120		\mathbf{Sn}^{50}					
v	9		13	B	84 27 (3+)		Al	124	53 (3+)	Ga ³¹	123		h 49	142	80 (3+)			
:I EMENT			·			•			12	Zn ³⁰	120		Cd ⁴⁸	140	95 (2+)			
FCTEDE	ר ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה								11		122			136				
OII DE CE	9 9			(E					10	Ni ²⁸	117	(2 (3+)	\mathbf{Pd}^{46}	130	86 (2+)			
			number	atomic number symbol atomic radius (10 m) charge of ion					6		118		Rh^{45}					
	OMIC AND IONIC RADII OF SELECTED ELEMENTS (EY Li 3 symbol 12							œ	Fe 26	124	64 (3+)	Ru ⁴⁴	136	62 (4 +)			ĸ.	
MUTV		KEY	=		(+ L) 9/				7	Mn 25	129	64 (3+)	Tc ⁴³	138	65 (4+)			invention 1–18.
					uns (10				9	\mathbf{Cr}^{24}	130	44 (6+)	M_0^{42}	148	65 (4 +)			ng to IUPAC co
					ionic ra				2	V 23	144	54 (5+)	${\sf Nb}^{41}$	156	64 (5 +)			nbered accordi
									4	Ti ²²	148	61 (4+)	$2r^{40}$	164	7.2 (4+)			Groups are numbered according to IUPAC convention 1
									က	Sc ²¹	159		γ 39	176	90 (3+)			_
_			2	Be 4	99 45 (2+)	5	Mg	140		Ca ²⁰			\mathbf{Sr}^{38}		118 (2+)	Ba ⁵⁶	_	
_	=	32 208 (1–)		Li ³	130 76 (1+)	;	Na	160	102 (1+)	K 19	200		Rb ³⁷	215	152 (1+)	Cs ₅₅	238	

18	He ²	2379	Ne 10	2087	Ar ¹⁸	1527	K r ³⁶	2.9 1357	Xe ⁵⁴	2.6 1177	
		17	9 1 0	1687	CI 17	3.2 1257	Br ³⁵		- 53	2.7 1015	
		16	8 8	1320	S 16	2.6 1006	Se ³⁴	2.6 947	Te ⁵²	2.1 876	
		15	2 8 9	1407	P 15		As		Sb ⁵¹		
		14	ۍ و و	1093	Si 14	1.9 793	Ge ³²		Su		
		13		807	AI ¹³	1.6 584	Ga ³¹	1.8	In 49	1.8	
ATION						12	Zn ³⁰	1.7	Cd ⁴⁸	1.7	
ST IONIS/	2		÷	_		11		1.9 752	Aq ⁴⁷	1.9 737	
AND FIRS	ELEMEN		'- - - -	pies (KJ mol		10	Ni ²⁸	1.9 743	Pd ⁴⁶	2.2	
TIVITIES	ERGIES OF SELECTED ELEMENTS EY atomic number symbol 2.2 electronegativity first ionisation enthalpies (kJ mol ⁻¹)				6	$\mathbf{C_0}^{27}$		Rh ⁴⁵	2.3 726		
RONEGA				tirst ion		80	Fe ²⁶	1.8 766	Ru ⁴⁴	2.2 717	
	ENER	KEY	₹ 5.2	1318		7	Mn^{25}	1.6 724	Tc ⁴³	1.9 708	onvention 1–18
					9		Cr^{24}	Cr 27 (659 M0 2.2 691		2.2 691	ng to IUPAC co
						2	V 23	1.6 656	Nb ⁴¹	1.6 670	nbered accordi
						4	Ti ²²	1.5 664	Zr ⁴⁰	1.3 666	Groups are numbered according to IUPAC convention 1–18.
						ო	Sc ²¹	1.4 637	γ 39	1.2	
,		2	Be 4	906	Mg ¹²	744	Ca ²⁰		Sr.38		Ba 0.9 509
-	Ŧ	2.2 1318	. 3	526	Na 11	0.9 502	K 19	0.8 425	Rb ³⁷	0.8 409	Cs 0.8 382

SOLUBILITY OF SELECTED COMPOUNDS AT 298 K

	bromide	carbonate	chloride	hydroxide	iodide	nitrate	oxide	phosphate	sulfate
aluminium	S	_	S	i	S	S	i	i	S
ammonium	S	S	S	S	S	S	_	S	S
barium	S	i	S	S	S	S	S	i	i
calcium	S	i	S	p	S	S	p	i	p
cobalt(II)	S	i	S	i	S	S	i	i	S
copper(II)	S	_	S	i	i	S	i	i	S
iron(II)	S	i	S	i	S	S	i	i	S
iron(III)	S	_	S	i	S	S	i	i	S
lead(II)	p	i	S	i	i	S	i	i	i
lithium	S	S	S	S	S	S	S	_	S
magnesium	S	i	S	i	S	S	i	p	S
manganese(II)	S	i	S	i	S	S	i	p	S
potassium	S	S	S	S	S	S	S	S	S
silver	i	i	i	i	i	S	i	i	p
sodium	S	S	S	S	S	S	S	S	S
zinc	S	i	S	i	S	S	i	i	S

Key

Abbreviation	Explanation
S	soluble in water (solubility greater than 10 g L^{-1})
p	partially soluble in water (solubility between 1 and 10 g L^{-1})
i	insoluble in water (solubility less than 1 g L^{-1})
_	no data

AVERAGE BOND ENTHALPIES AT 298 K

Single bonds

				Δ	H (kJ mol	-1)			
	Н	C	N	О	F	S	Cl	Br	I
Н	436								
C	414	346							
N	391	286	158						
О	463	358	214	144					
F	567	492	278	191	159				
S	364	289			327	266			
Cl	431	324	192	206	255	271	242		
Br	366	285		201	249	218	219	193	
I	298	228		201	280		211	178	151

Multiple bonds

Bond	$\Delta H (kJ \text{ mol}^{-1})$
C=C	614
C≡C	839
C=N	615
C≡N	890
C=O	804
N=N	470
N≡N	945
O=O	498

REACTIVITY SERIES OF METALS

Element	Reactivity	
K	most reactiv	e
Na		
Li		
Ba		
Sr		
Ca		
Mg		
Al		
C*		
Mn		
Zn		
Cr		
Fe		
Cd		
Со		
Ni		
Sn		
Pb		
H ₂ *		
Sb		
Bi		
Cu		
Hg		
Ag		
Au		
Pt	least reactive	e

^{*} Carbon (C) and hydrogen gas (H₂) added for comparison

STANDARD ELECTRODE POTENTIALS AT 298 K

Oxidised species Reduced species	E° (V)
$\operatorname{Li}^{+}(\operatorname{aq}) + \operatorname{e}^{-} \rightleftharpoons \operatorname{Li}(\operatorname{s})$	-3.04
$K^{+}(aq) + e^{-} \rightleftharpoons K(s)$	-2.94
$Ba^{2+}(aq) + 2e^{-} \rightleftharpoons Ba(s)$	-2.91
$\operatorname{Ca}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \rightleftharpoons \operatorname{Ca}(\operatorname{s})$	-2.87
$Na^{+}(aq) + e^{-} \rightleftharpoons Na(s)$	-2.71
$Mg^{2+}(aq) + 2e^{-} \rightleftharpoons Mg(s)$	-2.36
$Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s)$	-1.68
$\operatorname{Mn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \rightleftharpoons \operatorname{Mn}(\operatorname{s})$	-1.18
$2H_2O(1) + 2e^- \rightleftharpoons H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \rightleftharpoons \operatorname{Zn}(\operatorname{s})$	-0.76
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	-0.44
$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$	-0.24
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}(\operatorname{s})$	-0.14
$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$	-0.13
$2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g)$	0.00
$Cu^{2+}(aq) + e^{-} \rightleftharpoons Cu^{+}(aq)$	+0.16
$SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \rightleftharpoons SO_2(aq) + 2H_2O(1)$	+0.16
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+0.34
$O_2(g) + 2H_2O(l) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$Cu^{+}(aq) + e^{-} \rightleftharpoons Cu(s)$	+0.52
$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.77
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$	+0.80
$Br_2(l) + 2e^- \rightleftharpoons 2Br^-(aq)$	+1.08
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(1)$	+1.23
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-(aq)$	+1.36
$\text{Cr}_2\text{O}_7^{\ 2^-}(\text{aq}) + 14\text{H}^+(\text{aq}) + 6\text{e}^- \rightleftharpoons 2\text{Cr}^{3^+}(\text{aq}) + 7\text{H}_2\text{O}(1)$	+1.36
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightleftharpoons Mn^{2+}(aq) + 4H_2O(1)$	+1.51
$F_2(g) + 2e^- \rightleftharpoons 2F^-(aq)$	+2.89

GLUCOSE AND FRUCTOSE: STRAIGHT CHAIN AND lpha-ring forms

$$\begin{array}{c} \text{CHO} \\ \text{H}-\text{C}-\text{OH} \\ \text{HO}-\text{C}-\text{H} \\ \text{H}-\text{C}-\text{OH} \\ \text{H}-\text{C}-\text{OH} \\ \text{CH}_2\text{OH} \end{array} = \begin{array}{c} \text{CH}_2\text{OH} \\ \text{H} \\ \text{OH} \\ \text{H} \\ \text{OH} \end{array} = \begin{array}{c} \text{CH}_2\text{OH} \\ \text{H} \\ \text{OH} \\ \text{H} \\ \text{OH} \end{array}$$

straight chain D-glucose

 α -D-glucose

$$\begin{array}{c} CH_2OH \\ C=O \\ HO-C-H \\ H-C-OH \\ H-C-OH \\ CH_2OH \end{array} = \begin{array}{c} HOH_2C \\ OH \\ OH \\ OH \end{array} = \begin{array}{c} OH \\ CH_2OH \\ OH \\ OH \end{array} = \begin{array}{c} OH \\ OH \\ OH \\ OH \end{array}$$

straight chain D-fructose

 α -D-fructose

COMMON AMINO ACIDS

Common name (symbol)	Structural formula	pH of isoelectric point	Common name (symbol)	Structural formula	pH of isoelectric point
Alanine (Ala)	Н О Н ₂ N—С—С—ОН СН ₃	6.1	Arginine (Arg)	H O	10.7
Asparagine (Asn)	H O H ₂ N-C-C-OH CH ₂ C=O NH ₂	5.4	Aspartic acid (Asp)	Н О Н ₂ N—С—С—ОН СН ₂ С=О ОН	3.0
Cysteine (Cys)	H O H ₂ N-C-C-OH CH ₂ SH	5.1	Glutamic acid (Glu)	H O H ₂ N-C-C-C-OH CH ₂ CH ₂ C=O OH	3.2
Glutamine (Gln)	H O H O H N - C - C - OH CH ₂ CH ₂ C = O NH ₂	5.7	Glycine (Gly)	Н О Н ₂ N—С—С—ОН Н	6.1

COMMON AMINO ACIDS (continued)

Common name (symbol)	Structural formula	pH of isoelectric point	Common name (symbol)	Structural formula	pH of isoelectric point
Histidine (His)	Н О Н ₂ N—С—С—ОН СН ₂ NH	7.6		H O H ₂ N-C-C-OH CHCH ₃ CH ₂ CH ₃	
Leucine (Leu)	H O	6.0	Lysine (Lys)	H O I II H2N-C-C-OH I CH2 CH2 CH2 CH2 CH2 NH2	9.7
Methionine (Met)	H O H O H O	5.7		H O	
Proline (Pro)	O C—OH HN	6.3	Serine (Ser)	Н О Н ₂ N—С—С—ОН СН ₂ ОН	5.7

COMMON AMINO ACIDS (continued)

Common name (symbol)	Structural formula	pH of isoelectric point
Threonine (Thr)	H O H ₂ N-C-C-OH CHOH CH ₃	5.6
Tyrosine (Tyr)	Н О Н ₂ N—С—С—ОН СН ₂	5.7

Common name (symbol)	Structural formula	pH of isoelectric point
Tryptophan (Trp)	$\begin{array}{c c} H & O \\ \downarrow & \parallel \\ H_2N-C-C-OH \\ \downarrow & \\ CH_2 \\ \downarrow & \\ HN \end{array}$	5.9
Valine (Val)	H O H ₂ N—C—C—OH CHCH ₃ CH ₃	6.0

ACID-BASE INDICATORS

Name	pKa	pH range of colour change	Colour change (acidic to basic)
Methyl orange	3.7	3.1–4.4	red to yellow
Bromophenol blue	4.2	3.0-4.6	yellow to blue
Bromocresol green	4.7	3.8-5.4	yellow to blue
Methyl red	5.1	4.4-6.2	pink to yellow
Bromothymol blue	7.0	6.0-7.6	yellow to blue
Phenol red	7.9	6.8-8.4	yellow to red
Phenolphthalein	9.6	8.3–10.0	colourless to pink

INFRARED DATA

The table below shows the characteristic range of infrared absorption due to stretching in organic molecules.

Bond	Organic molecules	Wavelength (cm ⁻¹)
C–I	iodoalkanes	490–620
C–Br	bromoalkanes	500–600
C-Cl	chloroalkanes	600–800
C-F	fluoroalkanes	1000–1400
С-О	alcohol, ester	1050–1410
C=C	alkenes	1620–1680
C=O	aldehydes, carboxylic acid, ester, ketones	1700–1750
C≡C	alkynes	2100–2260
О–Н	carboxylic acids (hydrogen-bonded)	2500–3000
С–Н	alkanes, alkenes, alkynes, aldehydes, amides	2720–3100
О–Н	alcohol (hydrogen-bonded)	3200–3600
N-H	amines	3300–3500

FORMULAS AND CHARGES FOR COMMON POLYATOMIC IONS

Anions			
acetate (ethanoate)	CH ₃ COO or C ₂ H ₃ O ₂		
carbonate	CO ₃ ²⁻		
chlorate	ClO ₃		
chlorite	ClO ₂		
chromate	CrO ₄ ²⁻		
citrate	C ₆ H ₅ O ₇ ³⁻		
cyanide	CN ⁻		
dichromate	Cr ₂ O ₇ ²⁻		
dihydrogen phosphate	$\mathrm{H_2PO_4}^-$		
hypochlorite	ClO ⁻		
hydrogen carbonate	HCO ₃		
hydrogen sulfate	HSO ₄		
hydrogen phosphate	HPO ₄ ²⁻		
hydroxide	OH ⁻		
nitrate	NO ₃		
nitrite	NO_2^-		
perchlorate	ClO ₄		
permanganate	MnO ₄		
peroxide	O ₂ ²⁻		
phosphate	PO ₄ ³⁻		
sulfate	SO ₄ ²⁻		
sulfite	SO ₃ ²⁻		
thiosulfate	SO_3^{2-} $S_2O_3^{2-}$		

Cations		
ammonium	NH ₄ ⁺	
hydronium	H ₃ O ⁺	

REFERENCES

Aylward, G and Findlay, T 2008, *SI Chemical Data*, 5th ed, John Wiley & Sons, Brisbane. Haynes, WM (ed) 2016, *CRC Handbook of Chemistry and Physics*, 97th ed, CRC Press, Boca Raton, US.