

Trial Examination 2020

Question and response booklet

QCE Chemistry Units 3&4

Paper 1

Student's Name:			
Teacher's Name:			

Time allowed

- Perusal time 10 minutes
- Working time 90 minutes

General instructions

- Answer all questions in this question and response booklet.
- QCAA-approved calculator permitted.
- QCAA formula and data booklet provided.
- Planning paper will not be marked.

Section 1 (25 marks)

• 25 multiple choice questions

Section 2 (35 marks)

• 8 short response questions

Students are advised that this is a trial examination only and cannot in any way guarantee the content or the format of the 2020 QCE Chemistry examination.

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

SECTION 1

Instructions

- Choose the best answer for Questions 1–25.
- This section has 25 questions and is worth 25 marks.
- Use a 2B pencil to fill in the A, B, C or D answer bubble completely.
- If you change your mind or make a mistake, use an eraser to remove your response and fill in the new answer bubble completely.

	A	В	C	D
Example:	•		0	

	A	В	C	D
1.				
2.				
3.				
4.				
5.		\bigcirc		
6.				
7.				
8.				
9.				
10.				000000000000000000000000000000000000000
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
21. 22. 23. 24.				
23.				
24.				
25.				

SECTION 2

Instructions

- Write using black or blue pen.
- If you need more space for a response, use the additional pages at the back of this booklet.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.
- This section has eight questions and is worth 35 marks.

DO NOT WRITE ON THIS PAGE
THIS PAGE WILL NOT BE MARKED

QUESTION 26 (3 marks)

The graph below shows the variation in boiling points for two homologous series with relative molecular masses.

oiling points of the alkanes.							me iowei

OUESTION	27 (5	5 marks)

Determine the nH of the	solution. Show your working.	[2 m
betermine the pri or the	Solution. Show your working.	[2 11
	pH =	
		_
A student repeats titration	ons of 20.00 mL of 0.1135 M potassium hydro	oxide (KOH) with
-	nd finds that the average volume required to r	
is 19.35 mL.		
		· · · · · · · · · · · · · · · · · · ·
15 17.55 IIIL.		T
	ion of the sulfuric acid. Show your working.	
	ion of the sulfuric acid. Show your working.	
	ion of the sulfuric acid. Show your working.	
	ion of the sulfuric acid. Show your working.	[3 m
	ion of the sulfuric acid. Show your working.	
	ion of the sulfuric acid. Show your working.	
	ion of the sulfuric acid. Show your working.	
	ion of the sulfuric acid. Show your working.	
	ion of the sulfuric acid. Show your working.	
	ion of the sulfuric acid. Show your working.	
	ion of the sulfuric acid. Show your working.	
	ion of the sulfuric acid. Show your working.	
	ion of the sulfuric acid. Show your working. Concentration = M	

QUESTION 28 (6 marks)

The percentage of ionisation of three different monoprotic acids of concentration 0.10 M are shown in the table below.

Acid	methanoic	ethanoic	nitric
Percentage of ionisation	4.3	1.3	100

- a) The acids are clear liquids that have the same appearance. Two methods are used to try to distinguish between the acids:
 - measuring the electrical conductivity of each liquid
 - determining the volume of a 0.10 M sodium hydroxide (NaOH) solution needed to neutralise 50 mL of each liquid.

Explain which one of the three acids would have the highest pK_a value.	[2 n

QUESTION 29 (5 marks)

Identical volumes of two bases, P and Q, were titrated with 0.10 M hydrochloric acid (HCl). The titration curves are shown below.

- a) Justify two conclusions that can be made about the bases from the results of the titrations. [4 marks]

 Conclusion 1:

 Conclusion 2:
- b) Name one indicator that could be used for both titrations.

[1 mark]

QUESTION 30 (4 marks)

Hydrogen gas is used as a fuel and can be synthesised using different methods. One method involves the reaction of methane with steam according to the following equation.

$$CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)$$

a) In a laboratory experiment using this method, 12.4 g of methane is used to produce 3.71 g of hydrogen gas. Calculate the percentage yield of this reaction. Show your working. [2 marks] Percentage yield of $H_2 =$ ________% b) Hydrogen gas is used as the energy source in a hydrogen fuel cell. The overall cell reaction is shown by the following equation.

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(1)$

Write the half-equations for the reactions that occur at the electrodes in a hydrogen fuel cell that uses an acidic electrolyte. Include state symbols.

Anode: _____

[2 marks]

Cathode:

QUESTION 31 (5 marks)

The chemical reaction of an indicator (represented by HIn) can be shown by the following chemical equation.

$$HIn(aq) + H_2O(1) \rightleftharpoons In^-(aq) + H_3O^+(aq)$$

a) Using information from the equation, write an expression for the acid dissociation constant (K_a) of the indicator.

[1 mark]

$$K_{\rm a} =$$

b) Explain how the indicator performs its function in a titration where an acidic solution is titrated with a basic solution.

[3 marks]

c)	What occurs in the buffer zone region of an acid-base titration?	[1 mark]

QUESTION 32 (5 marks)

Ammonia is prepared industrially from hydrogen and nitrogen using a suitable catalyst according to the following equation.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

The table below shows the equilibrium yield of ammonia at different temperatures and pressures.

Total pressure	Temperature (°C)				
(atmospheres)	300	400	500		
200	61	38	18		
600	84	69	40		
1000	92	80	56		

(Note: $1 \text{ atmosphere} = approximately } 100 \text{ kPa}$)

The usual conditions for the industrial production of ammonia are moderate pressure (100–250 atmospheres) and moderate temperature (350–550°C). In terms of yield and rate of reaction, explain why these conditions are used for the production of ammonia. [3 man]	Explain how it can be deduced from the data that the formation of ammonia is exothermic.	[2 marks
(100–250 atmospheres) and moderate temperature (350–550°C). In terms of yield and rate		
(100–250 atmospheres) and moderate temperature (350–550°C). In terms of yield and rate		
(100–250 atmospheres) and moderate temperature (350–550°C). In terms of yield and rate		
(100–250 atmospheres) and moderate temperature (350–550°C). In terms of yield and rate		
(100–250 atmospheres) and moderate temperature (350–550°C). In terms of yield and rate		
	(100-250 atmospheres) and moderate temperature (350-550°C). In terms of yield and rate	e [3 mark.

QUESTION 33 (2 marks)		
Explain the difference between the structures of the <i>cis</i> and <i>trans</i> isomers of pent-2-ene. Y diagrams to support your response.	You may inclu	ıde

END OF PAPER

ADDITIONAL PAGE FOR STUDENT RESPONSES	
Write the question number you are responding to.	
	_
	_

ADDITIONAL PAGE FOR STUDENT RESPONSES	
Write the question number you are responding to.	

Trial Examination 2020

Formula and data booklet

QCE Chemistry Units 3&4

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

FORMULAS

Processing of data

Absolute uncertainty of the mean $\Delta \bar{x} = \pm \frac{(x_{\text{max}} - x_{\text{min}})}{2}$

Percentage uncertainty (%) = $\frac{\text{absolute uncertainty}}{\text{measurement}} \times \frac{100}{1}$

Percentage error (%) = $\left| \frac{\text{measured value - true value}}{\text{true value}} \right| \times 100$

Chemical reactions - reactants, products and energy change

 $\Delta H = H_{\text{(products)}} - H_{\text{(reactants)}}$

 $\Delta H = \Sigma$ (bonds broken) – Σ (bonds formed)

 $Q = mc\Delta T$

Percentage yield (%) = $\frac{\text{experimental yield}}{\text{theoretical yield}} \times \frac{100}{1}$

Aqueous solutions and acidity

Molarity = $\frac{\text{moles of solute } (n)}{\text{volume of solution } (V)}$

Chemical equilibrium systems

$$K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$
 for the reaction: $aA + bB \rightleftharpoons cC + dD$

$$K_{\mathbf{w}} = [\mathbf{H}^+][\mathbf{OH}^-]$$

$$pH = -\log_{10}[H^+]$$

$$pOH = -log_{10}[OH^{-}]$$

$$K_{\rm w} = K_{\rm a} \times K_{\rm b}$$

$$K_{\rm a} = \frac{[{\rm H_3O}^+][{\rm A}^-]}{[{\rm HA}]}$$

$$K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]}$$

PHYSICAL CONSTANTS AND UNIT CONVERSIONS

Physical constants and unit conversions	
Absolute zero	0 K = -273°C
Atomic mass unit	$1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$
Avogadro's constant	$N_{\rm A} = 6.02 \times 10^{23} \text{ mol}^{-1}$
Ideal gas constant	$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
Ionic product constant for water (at 298 K)	$K_{\rm w} = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$
Molar volume of an ideal gas (at STP)	$2.27 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1} = 22.7 \text{ dm}^3 \text{ mol}^{-1}$
Specific heat capacity of water (at 298 K)	$c_{\rm w} = 4.18 \text{ J g}^{-1} \text{ K}^{-1}$
Standard temperature and pressure (STP)	273 K and 100 kPa
Volume and capacity conversions	$1 \text{ dm}^3 = 1 \times 10^{-3} \text{ m}^3 = 1 \times 10^3 \text{ cm}^3 = 1 \text{ L}$

LIST OF ELEMENTS

Name	Atomic no.	Symbol		Name	Name Atomic no.
drogen	1	Н		Krypton	Krypton 36
Ielium	2	Не		Rubidium	Rubidium 37
Lithium	3	Li	Stron	tium	tium 38
eryllium	4	Ве	Yttrium		39
oron	5	В	Zirconium		40
Carbon	6	С	Niobium		41
Nitrogen	7	N	Molybdenum		42
Oxygen	8	О	Technetium		43
Fluorine	9	F	Ruthenium		44
Neon	10	Ne	Rhodium		45
Sodium	11	Na	Palladium		46
Magnesium	12	Mg	Silver		47
Aluminium	13	Al	Cadmium		48
Silicon	14	Si	Indium		49
Phosphorus	15	P	Tin		50
Sulfur	16	S	Antimony		51
Chlorine	17	Cl	Tellerium		52
Argon	18	Ar	Iodine		53
Potassium	19	K	Xenon		54
Calcium	20	Ca	Cesium		55
Scandium	21	Sc	Barium		56
Titanium	22	Ti	Lanthanum		57
Vanadium	23	V	Cerium	1	58
Chromium	24	Cr	Praseodymium	Ì	59
Manganese	25	Mn	Neodymium	Ì	60
Iron	26	Fe	Promethium	Ì	61
Cobalt	27	Со	Samarium		62
Nickel	28	Ni	Europium	Ì	63
Copper	29	Cu	Gadolinium	t	64
Zinc	30	Zn	Terbium		65
Gallium	31	Ga	Dysprosium		66
Germanium	32	Ge	Holmium		67
Arsenic	33	As	Erbium		68
Selenium	34	Se	Thulium		69
Bromine	35	Br	Ytterbium		70

LIST OF ELEMENTS (continued)

Name	Atomic no.	Symbol
Lutetium	71	Lu
Hafnium	72	Hf
Tantalum	73	Та
Tungsten	74	W
Rhenium	75	Re
Osmium	76	Os
Iridium	77	Ir
Platinum	78	Pt
Gold	79	Au
Mercury	80	Hg
Thallium	81	Tl
Lead	82	Pb
Bismuth	83	Bi
Polonium	84	Po
Astatine	85	At
Radon	86	Rn
Francium	87	Fr
Radium	88	Ra
Actinium	89	Ac
Thorium	90	Th
Protactinium	91	Pa
Uranium	92	U
Neptunium	93	Np
Plutonium	94	Pu

Name	Atomic no.	Symbol
Americium	95	Am
Curium	96	Cm
Berkelium	97	Bk
Californium	98	Cf
Einsteinium	99	Es
Fermium	100	Fm
Mendelevium	101	Md
Nobelium	102	No
Lawrencium	103	Lr
Rutherfordium	104	Rf
Dubnium	105	Db
Seaborgium	106	Sg
Bohrium	107	Bh
Hassium	108	Hs
Meitnerium	109	Mt
Darmstadtium	110	Ds
Roentgenium	111	Rg
Copernicium	112	Cn
Nihonium	113	Nh
Flerovium	114	Fl
Moscovium	115	Mc
Livermorium	116	Lv
Tennessine	117	Ts
Oganesson	118	Og

18	He 4.00	10	2	20.18	18	Ar	39.95	36	<u>></u>	83.80	54	Xe	131.29	98	R	(222.0)	118	6 0	(102)		71	r n	174.97		103	
_	17			19.00	17	5	35.45	35	Br	79.90	53	_	126.90	85	At	(210.0)	117	T	(107)		70	Υb	173.05		102	<u>N</u>
	9	0	。 C	16.00	16	S	32.06	34	Se	78.97	52	Te	127.60	84	Po	(210.0)	116	LV	(202)		69	Tm	168.93		101	Βq
	7.		2	14.01	15	_	30.97	33	As	74.92	51	Sb	121.76	83	<u>.</u>	208.98	115	Mc	(007)		89	Ţ.	167.26		100	ᆵ
	14		ء د	12.01	14	Si	28.09	32	Ge	72.63	20	Sn	118.71	82	Pb	207.2	114	H	(203)		29	Ho	164.93		99	Es
	6.	2	2	10.81	13	A	26.98	31	Ga	69.72	49	드	114.82	81	F	204.38	113	Nh	1,021		99	Dy	162.50		98	Ç
							12	30	Zn	65.38	48	_C q	112.41	80	H	200.59	112	Cu	(007)		69	T p	158.93		97	番
IIS							1	29	ŋ	63.55	47	Ag	107.87	79	Au	196.97	111	Rg	(717)		64	P G	157.25		96	Ç
PERIODIC TABLE OF THE ELEMENTS							10	28	Z	58.69	46	Pd	106.42	78	Ŧ	195.08	110	DS	(107)		63	E	151.96		95	Am
E OF THE		umber		relative atomic mass*			6	27	ပ္	58.93	45	Rh	102.91	77	_	192.22	109	Mt	002		62	Sm	150.36		94	Pu
DIC TABL		1 atomic number	symbol	relative			œ	26	Fe	55.85	44	Bu	101.07	9/	08	190.23	108	HS	1.0021		61	Pm	(146.9)		93	No
PERIO	KEY		Ξ	1.01			7	25	Z Z	54.94	43	ے ا	(98.91)	75	Re	186.21	107	Bh	1		09	Zq	144.24		92	-
							9	24	ت	52.00	42	Mo	95.95	74	>	183.84	106	Sg	(200.1)		59	Pr	140.91		91	Pa
							2	23	>	50.94	41	N	92.91	73	Дa	180.95	105	Db	1		28	Ce	140.12		90	占
							4	22	ï	47.87	40	Zr	91.22	72	Ŧ	178.49	104	Bf	(2.1.02)	Lanthanoids	22	La	138.91	Actinoids	88	Ac
							က	21	Sc	44.96	39	>	88.91	57-71	Lanthanoids		89-103	Actinoids		- 		^ - + -				1
	2	-		9.01	12	Mg	24.31	20	Ca	40.08	38	Sr	87.62	99	Ba	137.33	88	Ba	(1.022)							
-	= 5	6	· <u>-</u>	6.94	1	Na	22.99	19	¥	39.10	37	Rb	85.47	55	Cs	132.91	87	Fr	(0.022)							

Groups are numbered according to IUPAC convention 1–18. *Values in brackets are for the isotope with the longest half-life.

18	He ²	3/	10	ا و	7	Ar ¹⁸	101		\mathbf{Kr}^{36}	116	X 54	136		
		ŗ	- 6: -) L 6	133 (1–)	CI ₁₇	100 181 (1–)		35 Br		1 53	136 220 (1–)		
		ć	9	0 2	140 (2–)	S 16			Se ³⁴	118 198 (2–)	T. 52	137 221 (2–)		
		ŕ	cl 7	2 :	146 (3–)	P 15			As ³³	120 58 (3+)	Sh 51	140 76 (3+)		
		7	4	ر ا	16 (4+)	Si 14			\mathbf{Ge}^{32}	120 53 (4+)		140 69 (4 +)		
v	9	ç	<u>.</u>	m 2	27 (3+)	AI ¹³	124 53 (3+)		Ga	123 62 (3+)	In 49	142 80 (3+)		
TOMIC AND IONIC BABILOE SELECTED ELEMENTS									$2n^{30}$			140 95 (2+)		
I ECTED I								11		122 77 (1 +)		136 115 (1 +)		
חוו טב כב	UII UF 3E			Ê				10	Ni ²⁸	69 (2+)		130 86 (2+)		
ONIC BA		4	symbol12	radius (10 of ion				6		74 (2+)		134 67 (3+)		
		•	2							124 78 (2+)	- 1	136 62 (4+)		œί
ATOTA		KEY	=	130 m) 76 (1+)				7	Mn	129 83 (2+)	T. 43	138 65 (4+)		onvention 1–1
				ionic radius (10 ⁻¹² m)				9	Cr ²⁴	130 62 (3+)	M 42	148 65 (4 +)		ing to IUPAC c
				ionic ra				2	V 23	144 79 (2 +)	Nh41	156 64 (5+)		mbered accord
								4	Ti ²²	148 86 (2 +)		164 72 (4 +)		Groups are numbered according to IUPAC convention 1–18.
								3		159 75 (3+)	v 39	176 90 (3+)		
_		c	7	B	45 (2+)	Mg^{12}	140 72 (2+)		\mathbf{Ca}^{20}	174 100 (2+)	38 Sr	190 118 (2+)	Ba	206 135 (2+)
-	H	32 208 (1–)			76 (1+)	Na 11	160 102 (1+)		K 19	200 138 (1 +)	Rh ³⁷	215 152 (1+)	Cs	238 167 (1 +)

7

18	He ²	2379	Ne 10	2087	Ar ¹⁸	1527	K r ³⁶	2.9 1357	Xe ₅₄	2.6	
		17	6	1687	CI ₁₇	3.2 1257	Br ³⁵		1 53	2.7 1015	
		16	8	1320	S 16	2.6 1006	Se ³⁴	2.6 947	Te ⁵²	2.1 876	
		15		1407	P 15	2.2 1018	As ³³	2.2 953	Sb ⁵¹		
		14	O s	1093	Si 14	1.9 793	Ge ³²	2.0	Sn	2.0 715	
		13	. 5	807	AI ¹³	1.6 584	Ga ³¹		In 49	1.8	
ATION					ı	12	Zn ³⁰	1.7 913	Cd ⁴⁸	1.7 874	
ECTRONEGATIVITIES AND FIRST IONISATION	2		-	_		1	Cu ²⁹	1.9 752	-	1.9 737	
AND FIRE		atomic number symbol electronegativity first ionisation enthalpies (k.J mol ⁻¹				10	Ni ²⁸	1.9 743	Pd ⁴⁶		
TIVITIES	ברברובר	, de	symbol electronegativity	isation entha		6	C_0^{27}		Rh ⁴⁵		
RONEGA	IERGIES OF SELECTED ELEIVIENTS	your cimoto	symbol electron	first ion		8	Fe ²⁶	1.8 766	Ru ⁴⁴	2.2	
ELECT		KEY	2.2	1318		7	_	1.	Tc ⁴³	1.9 708	Groups are numbered according to IUPAC convention 1–18.
						9	Cr^{24}	1.7 659	Mo ⁴²	2.2 691	ng to IUPAC co
						വ	V 23	1.6 656	Nb ⁴¹	1.6 670	nbered accordi
						4	Ti ²²	1.5 664		1.3 666	Groups are nun
						က		1.4 637		1.2 606	
		2	Be 4	906	Mg ¹²	1.3	Ca ²⁰		Sr ³⁸		Ba 56
-	= 3	2.2 1318		526	Na 11	0.9	K 19	0.8 425	Rb ³⁷	0.8	Cs 0.8 382

SOLUBILITY OF SELECTED COMPOUNDS AT 298 K

	Bromide	Carbonate	Chloride	Hydroxide	Iodide	Nitrate	Oxide	Phosphate	Sulfate
Aluminium	S	_	S	i	S	S	i	i	S
Ammonium	S	S	S	S	S	S	_	s	S
Barium	S	i	s	s	S	s	S	i	i
Calcium	S	i	s	p	S	s	p	i	p
Cobalt(II)	S	i	s	i	S	S	i	i	S
Copper(II)	S	1	s	i	i	S	i	i	S
Iron(II)	S	i	s	i	S	S	i	i	S
Iron(III)	S	1	s	i	S	S	i	i	S
Lead(II)	p	i	s	i	i	S	i	i	i
Lithium	S	s	s	s	S	S	s	_	S
Magnesium	S	i	s	i	S	S	i	p	S
Manganese(II)	S	i	s	i	S	S	i	p	S
Potassium	S	s	s	s	S	S	S	S	S
Silver	i	i	i	i	i	S	i	i	p
Sodium	S	s	s	s	S	S	S	S	S
Zinc	s	i	s	i	S	S	i	i	s

Key

Abbreviation	Explanation
S	Soluble in water (solubility greater than 10 g L ⁻¹)
p	Partially soluble in water (solubility between 1 and 10 g L^{-1})
i	Insoluble in water (solubility less than 1 g L ⁻¹)
_	No data

AVERAGE BOND ENTHALPIES AT 298 K

Single bonds

		$\Delta H (\text{kJ mol}^{-1})$											
	Н	С	N	О	F	S	Cl	Br	I				
Н	436												
C	414	346											
N	391	286	158										
0	463	358	214	144									
F	567	492	278	191	159								
S	364	289			327	266							
Cl	431	324	192	206	255	271	242						
Br	366	285		201	249	218	219	193					
I	298	228		201	280		211	178	151				

Multiple bonds

Bond	ΔH (kJ mol ⁻¹)
C=C	614
C≡C	839
C=N	615
C≡N	890
C=O	804
N=N	470
N≡N	945
O=O	498

REACTIVITY SERIES OF METALS

Element	Reactivity
K	most reactive
Na	^
Li	
Ba	
Sr	
Ca	
Mg	
Al	
C*	
Mn	
Zn	
Cr	
Fe	
Cd	
Co	
Ni	
Sn	
Pb	
${ m H_2}^*$	
Sb	
Bi	
Cu	
Hg	
Ag	
Au	
Pt	least reactive

^{*}Carbon (C) and hydrogen gas (H₂) added for comparison

STANDARD ELECTRODE POTENTIALS AT 298 K

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Oxidised species \rightleftharpoons Reduced species	E ° (V)
$Ba^{2+}(aq) + 2e^{-} \rightleftharpoons Ba(s) \qquad -2.91$ $Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s) \qquad -2.87$ $Na^{+}(aq) + e^{-} \rightleftharpoons Na(s) \qquad -2.71$ $Mg^{2+}(aq) + 2e^{-} \rightleftharpoons Mg(s) \qquad -2.36$ $AI^{3+}(aq) + 3e^{-} \rightleftharpoons Mn(s) \qquad -1.68$ $Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s) \qquad -1.88$ $2H_{2}O(l) + 2e^{-} \rightleftharpoons H_{2}(g) + 2OH^{-}(aq) \qquad -0.83$ $Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s) \qquad -0.76$ $Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s) \qquad -0.44$ $Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Sn(s) \qquad -0.14$ $Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s) \qquad -0.13$ $2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g) \qquad 0.00$ $Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu^{+}(aq) \qquad +0.16$ $SO_{4}^{-2-}(aq) + 4H^{+}(aq) + 2e^{-} \rightleftharpoons SO_{2}(aq) + 2H_{2}O(l) \qquad +0.16$ $Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s) \qquad +0.34$ $O_{2}(g) + 2H_{2}O(l) + 4e^{-} \rightleftharpoons 4OH^{-}(aq) \qquad +0.40$ $Cu^{+}(aq) + e^{-} \rightleftharpoons Cu(s) \qquad +0.52$ $I_{2}(s) + 2e^{-} \rightleftharpoons 2I^{-}(aq) \qquad +0.54$ $Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq) \qquad +0.77$ $Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s) \qquad +0.80$ $Br_{2}(l) + 2e^{-} \rightleftharpoons 2Br^{-}(aq) \qquad +1.08$ $O_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_{2}O(l) \qquad +1.23$ $CI_{2}(g) + 2e^{-} \rightleftharpoons 2CI^{-}(aq) \qquad +1.36$ $MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_{2}O(l) \qquad +1.36$ $MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_{2}O(l) \qquad +1.51$	$Li^{+}(aq) + e^{-} \rightleftharpoons Li(s)$	-3.04
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$K^{+}(aq) + e^{-} \rightleftharpoons K(s)$	-2.94
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Ba^{2+}(aq) + 2e^{-} \rightleftharpoons Ba(s)$	-2.91
$Mg^{2+}(aq) + 2e^{-} \rightleftharpoons Mg(s)$ $Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s)$ $Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$ $2H_2O(l) + 2e^{-} \rightleftharpoons H_2(g) + 2OH^{-}(aq)$ -0.83 $Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$ $Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$ $Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$ $Sn^{2+}(aq) + 2e^{-} \rightleftharpoons Sn(s)$ $Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$ $2H^{+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$ $2H^{+}(aq) + 2e^{-} \rightleftharpoons H_2(g)$ $Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu^{+}(aq)$ $SO_4^{-2}(aq) + 4H^{+}(aq) + 2e^{-} \rightleftharpoons SO_2(aq) + 2H_2O(l)$ $Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$ $O_2(g) + 2H_2O(l) + 4e^{-} \rightleftharpoons 4OH^{-}(aq)$ $Cu^{+}(aq) + e^{-} \rightleftharpoons Cu(s)$ $I_2(s) + 2e^{-} \rightleftharpoons 2\Gamma^{-}(aq)$ $Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$ $Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$ $Br_2(l) + 2e^{-} \rightleftharpoons 2Br^{-}(aq)$ $O_2(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_2O(l)$ -1.23 $Cl_2(g) + 2e^{-} \rightleftharpoons 2Br^{-}(aq)$ $O_2(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_2O(l)$ -1.23 $Cl_2(g) + 2e^{-} \rightleftharpoons 2C\Gamma^{-}(aq)$ -1.24 -0.44 -0.40	$Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)$	-2.87
$Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s) \qquad -1.68$ $Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s) \qquad -1.18$ $2H_2O(l) + 2e^{-} \rightleftharpoons H_2(g) + 2OH^{-}(aq) \qquad -0.83$ $Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s) \qquad -0.76$ $Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s) \qquad -0.44$ $Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s) \qquad -0.24$ $Sn^{2+}(aq) + 2e^{-} \rightleftharpoons Sn(s) \qquad -0.14$ $Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s) \qquad -0.13$ $2H^{+}(aq) + 2e^{-} \rightleftharpoons H_2(g) \qquad 0.00$ $Cu^{2+}(aq) + e^{-} \rightleftharpoons Cu^{+}(aq) \qquad +0.16$ $SO_4^{-2}(aq) + 4H^{+}(aq) + 2e^{-} \rightleftharpoons SO_2(aq) + 2H_2O(l) \qquad +0.16$ $Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s) \qquad +0.34$ $O_2(g) + 2H_2O(l) + 4e^{-} \rightleftharpoons 4OH^{-}(aq) \qquad +0.40$ $Cu^{+}(aq) + e^{-} \rightleftharpoons Cu(s) \qquad +0.52$ $I_2(s) + 2e^{-} \rightleftharpoons 2I^{-}(aq) \qquad +0.54$ $Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq) \qquad +0.77$ $Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s) \qquad +0.80$ $Br_2(l) + 2e^{-} \rightleftharpoons 2Br^{-}(aq) \qquad +1.08$ $O_2(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_2O(l) \qquad +1.23$ $Cl_2(g) + 2e^{-} \rightleftharpoons 2Cl^{-}(aq) \qquad +1.36$ $MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_2O(l) \qquad +1.36$ $MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_2O(l) \qquad +1.51$	$Na^{+}(aq) + e^{-} \rightleftharpoons Na(s)$	-2.71
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Mg^{2+}(aq) + 2e^{-} \Longrightarrow Mg(s)$	-2.36
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s)$	-1.68
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Mn^{2+}(aq) + 2e^{-} \Longrightarrow Mn(s)$	-1.18
$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$ $Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$ $Sn^{2+}(aq) + 2e^{-} \rightleftharpoons Sn(s)$ $Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$ $2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g)$ $Cu^{2+}(aq) + e^{-} \rightleftharpoons Cu^{+}(aq)$ $SO_{4}^{2-}(aq) + 4H^{+}(aq) + 2e^{-} \rightleftharpoons SO_{2}(aq) + 2H_{2}O(1)$ $Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$ $O_{2}(g) + 2H_{2}O(1) + 4e^{-} \rightleftharpoons 4OH^{-}(aq)$ $Cu^{+}(aq) + e^{-} \rightleftharpoons Cu(s)$ $I_{2}(s) + 2e^{-} \rightleftharpoons 2I^{-}(aq)$ $Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$ $Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$ $Br_{2}(1) + 2e^{-} \rightleftharpoons 2Br^{-}(aq)$ $O_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_{2}O(1)$ $Cl_{2}(g) + 2e^{-} \rightleftharpoons 2Cl^{-}(aq)$ $I_{1}OR$ $I_{2}OR$ $I_{1}OR$ $I_{2}OR$ $I_{2}OR$ $I_{2}OR$ $I_{3}OR$ $I_{2}OR$ $I_{1}OR$ $I_{1}OR$ $I_{2}OR$ $I_{2}OR$ $I_{3}OR$ $I_{1}OR$ $I_{1}OR$ $I_{2}OR$ $I_{2}OR$ $I_{3}OR$ $I_{1}OR$ $I_{2}OR$ $I_{2}OR$ $I_{2}OR$ $I_{3}OR$ $I_{1}OR$ $I_{2}OR$ $I_{2}OR$ $I_{2}OR$ $I_{3}OR$ $I_{1}OR$ $I_{1}OR$ $I_{2}OR$ $I_{1}OR$ $I_{2}OR$ $I_{2}OR$ $I_{3}OR$ $I_{3}OR$ $I_{4}OR$ I_{4}	$2H_2O(1) + 2e^- \rightleftharpoons H_2(g) + 2OH^-(aq)$	-0.83
$\begin{array}{lll} Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s) & -0.24 \\ Sn^{2+}(aq) + 2e^{-} \rightleftharpoons Sn(s) & -0.14 \\ Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s) & -0.13 \\ 2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g) & 0.00 \\ Cu^{2+}(aq) + e^{-} \rightleftharpoons Cu^{+}(aq) & +0.16 \\ SO_{4}^{2-}(aq) + 4H^{+}(aq) + 2e^{-} \rightleftharpoons SO_{2}(aq) + 2H_{2}O(1) & +0.16 \\ Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s) & +0.34 \\ O_{2}(g) + 2H_{2}O(1) + 4e^{-} \rightleftharpoons 4OH^{-}(aq) & +0.40 \\ Cu^{+}(aq) + e^{-} \rightleftharpoons Cu(s) & +0.52 \\ I_{2}(s) + 2e^{-} \rightleftharpoons 2I^{-}(aq) & +0.54 \\ Fe^{3+}(aq) + e^{-} \rightleftharpoons Ag(s) & +0.80 \\ Br_{2}(1) + 2e^{-} \rightleftharpoons 2Br^{-}(aq) & +1.08 \\ O_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_{2}O(1) & +1.23 \\ Cl_{2}(g) + 2e^{-} \rightleftharpoons 2Cl^{-}(aq) & +1.36 \\ Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightleftharpoons 2Cr_{3}^{3+}(aq) + 7H_{2}O(1) & +1.36 \\ MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_{2}O(1) & +1.51 \\ \end{array}$	$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$	-0.76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Fe^{2+}(aq) + 2e^{-} \rightleftharpoons Fe(s)$	-0.44
$\begin{array}{lll} Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s) & -0.13 \\ 2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g) & 0.00 \\ Cu^{2+}(aq) + e^{-} \rightleftharpoons Cu^{+}(aq) & +0.16 \\ SO_{4}^{2-}(aq) + 4H^{+}(aq) + 2e^{-} \rightleftharpoons SO_{2}(aq) + 2H_{2}O(1) & +0.16 \\ Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s) & +0.34 \\ O_{2}(g) + 2H_{2}O(1) + 4e^{-} \rightleftharpoons 4OH^{-}(aq) & +0.40 \\ Cu^{+}(aq) + e^{-} \rightleftharpoons Cu(s) & +0.52 \\ I_{2}(s) + 2e^{-} \rightleftharpoons 2I^{-}(aq) & +0.54 \\ Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq) & +0.77 \\ Ag^{+}(aq) + e^{-} \rightleftharpoons 2Br^{-}(aq) & +1.08 \\ O_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_{2}O(1) & +1.23 \\ CI_{2}(g) + 2e^{-} \rightleftharpoons 2CI^{-}(aq) & +1.36 \\ Cr_{2}O_{7}^{-2}(aq) + 14H^{+}(aq) + 6e^{-} \rightleftharpoons 2Cr^{3+}(aq) + 7H_{2}O(1) & +1.36 \\ MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_{2}O(1) & +1.51 \\ \end{array}$	$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$	-0.24
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}(s)$	-0.14
$Cu^{2+}(aq) + e^{-} \rightleftharpoons Cu^{+}(aq) + 0.16$ $SO_{4}^{2-}(aq) + 4H^{+}(aq) + 2e^{-} \rightleftharpoons SO_{2}(aq) + 2H_{2}O(1) + 0.16$ $Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s) + 0.34$ $O_{2}(g) + 2H_{2}O(1) + 4e^{-} \rightleftharpoons 4OH^{-}(aq) + 0.52$ $Cu^{+}(aq) + e^{-} \rightleftharpoons Cu(s) + 0.52$ $I_{2}(s) + 2e^{-} \rightleftharpoons 2I^{-}(aq) + 0.54$ $Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq) + 0.77$ $Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s) + 0.80$ $Br_{2}(1) + 2e^{-} \rightleftharpoons 2Br^{-}(aq) + 1.08$ $O_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_{2}O(1) + 1.23$ $Cl_{2}(g) + 2e^{-} \rightleftharpoons 2Cl^{-}(aq) + 1.36$ $Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightleftharpoons 2Cr^{3+}(aq) + 7H_{2}O(1) + 1.36$ $MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_{2}O(1) + 1.51$	$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$	-0.13
$SO_{4}^{2-}(aq) + 4H^{+}(aq) + 2e^{-} \rightleftharpoons SO_{2}(aq) + 2H_{2}O(1) +0.16$ $Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s) +0.34$ $O_{2}(g) + 2H_{2}O(1) + 4e^{-} \rightleftharpoons 4OH^{-}(aq) +0.52$ $I_{2}(s) + 2e^{-} \rightleftharpoons 2I^{-}(aq) +0.54$ $Fe^{3+}(aq) + e^{-} \rightleftharpoons Ag(s) +0.80$ $Br_{2}(1) + 2e^{-} \rightleftharpoons 2Br^{-}(aq) +1.08$ $O_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_{2}O(1) +1.23$ $CI_{2}(g) + 2e^{-} \rightleftharpoons 2CI^{-}(aq) +1.36$ $Cr_{2}O_{7}^{2-}(aq) +14H^{+}(aq) +6e^{-} \rightleftharpoons 2Cr^{3+}(aq) +7H_{2}O(1) +1.36$ $MnO_{4}^{-}(aq) + 8H^{+}(aq) +5e^{-} \rightleftharpoons Mn^{2+}(aq) +4H_{2}O(1) +1.51$	$2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g)$	0.00
$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s) + 0.34$ $O_{2}(g) + 2H_{2}O(l) + 4e^{-} \rightleftharpoons 4OH^{-}(aq) + 0.52$ $Cu^{+}(aq) + e^{-} \rightleftharpoons Cu(s) + 0.52$ $I_{2}(s) + 2e^{-} \rightleftharpoons 2I^{-}(aq) + 0.54$ $Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq) + 0.77$ $Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s) + 0.80$ $Br_{2}(l) + 2e^{-} \rightleftharpoons 2Br^{-}(aq) + 1.08$ $O_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_{2}O(l) + 1.23$ $Cl_{2}(g) + 2e^{-} \rightleftharpoons 2CI^{-}(aq) + 1.36$ $Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightleftharpoons 2Cr^{3+}(aq) + 7H_{2}O(l) + 1.36$ $MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_{2}O(l) + 1.51$	$Cu^{2+}(aq) + e^{-} \rightleftharpoons Cu^{+}(aq)$	+0.16
$O_{2}(g) + 2H_{2}O(1) + 4e^{-} \rightleftharpoons 4OH^{-}(aq) $ $Cu^{+}(aq) + e^{-} \rightleftharpoons Cu(s) $ $I_{2}(s) + 2e^{-} \rightleftharpoons 2I^{-}(aq) $ $Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq) $ $Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s) $ $Br_{2}(1) + 2e^{-} \rightleftharpoons 2Br^{-}(aq) $ $O_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_{2}O(1) $ $Cl_{2}(g) + 2e^{-} \rightleftharpoons 2Cl^{-}(aq) $ $Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightleftharpoons 2Cr^{3+}(aq) + 7H_{2}O(1) $ $H1.36$ $MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_{2}O(1) $ $+1.51$	$SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \Longrightarrow SO_2(aq) + 2H_2O(1)$	+0.16
$Cu^{+}(aq) + e^{-} \rightleftharpoons Cu(s) $ $L_{2}(s) + 2e^{-} \rightleftharpoons 2I^{-}(aq) $ $+0.52$ $I_{2}(s) + 2e^{-} \rightleftharpoons 2I^{-}(aq) $ $+0.77$ $Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s) $ $Br_{2}(l) + 2e^{-} \rightleftharpoons 2Br^{-}(aq) $ $Cl_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_{2}O(l) $ $Cl_{2}(g) + 2e^{-} \rightleftharpoons 2Cl^{-}(aq) $ $Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightleftharpoons 2Cr^{3+}(aq) + 7H_{2}O(l) $ $+1.36$ $MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_{2}O(l) $ $+1.51$	$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$	+0.34
$I_{2}(s) + 2e^{-} \rightleftharpoons 2I^{-}(aq) + 0.54$ $Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq) + 0.77$ $Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s) + 0.80$ $Br_{2}(l) + 2e^{-} \rightleftharpoons 2Br^{-}(aq) + 1.08$ $O_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_{2}O(l) + 1.23$ $Cl_{2}(g) + 2e^{-} \rightleftharpoons 2Cl^{-}(aq) + 1.36$ $Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightleftharpoons 2Cr^{3+}(aq) + 7H_{2}O(l) + 1.36$ $MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_{2}O(l) + 1.51$	$O_2(g) + 2H_2O(1) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq) + 0.77$ $Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s) + 0.80$ $Br_{2}(l) + 2e^{-} \rightleftharpoons 2Br^{-}(aq) + 1.08$ $O_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_{2}O(l) + 1.23$ $Cl_{2}(g) + 2e^{-} \rightleftharpoons 2Cl^{-}(aq) + 1.36$ $Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightleftharpoons 2Cr^{3+}(aq) + 7H_{2}O(l) + 1.36$ $MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_{2}O(l) + 1.51$	$Cu^{+}(aq) + e^{-} \rightleftharpoons Cu(s)$	+0.52
$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s) +0.80$ $Br_{2}(l) + 2e^{-} \rightleftharpoons 2Br^{-}(aq) +1.08$ $O_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_{2}O(l) +1.23$ $Cl_{2}(g) + 2e^{-} \rightleftharpoons 2Cl^{-}(aq) +1.36$ $Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightleftharpoons 2Cr^{3+}(aq) + 7H_{2}O(l) +1.36$ $MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_{2}O(l) +1.51$	$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54
$Br_{2}(l) + 2e^{-} \rightleftharpoons 2Br^{-}(aq) $ +1.08 $O_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_{2}O(l) $ +1.23 $Cl_{2}(g) + 2e^{-} \rightleftharpoons 2Cl^{-}(aq) $ +1.36 $Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightleftharpoons 2Cr^{3+}(aq) + 7H_{2}O(l) $ +1.36 $MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_{2}O(l) $ +1.51	$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.77
$O_{2}(g) + 4H^{+}(aq) + 4e^{-} \rightleftharpoons 2H_{2}O(1) $ $Cl_{2}(g) + 2e^{-} \rightleftharpoons 2Cl^{-}(aq) $ $Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightleftharpoons 2Cr^{3+}(aq) + 7H_{2}O(1) $ $+1.36$ $MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_{2}O(1) $ $+1.51$	$Ag^{+}(aq) + e^{-} \Longrightarrow Ag(s)$	+0.80
$Cl_{2}(g) + 2e^{-} \rightleftharpoons 2Cl^{-}(aq) $ $+1.36$ $Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq) + 6e^{-} \rightleftharpoons 2Cr^{3+}(aq) + 7H_{2}O(l) $ $+1.36$ $MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightleftharpoons Mn^{2+}(aq) + 4H_{2}O(l) $ $+1.51$	$Br_2(1) + 2e^- \rightleftharpoons 2Br^-(aq)$	+1.08
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightleftharpoons 2Cr^{3+}(aq) + 7H_2O(1)$ +1.36 $MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightleftharpoons Mn^{2+}(aq) + 4H_2O(1)$ +1.51	$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(1)$	+1.23
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightleftharpoons Mn^{2+}(aq) + 4H_2O(1)$ +1.51	$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-(aq)$	+1.36
2 2 2	$\text{Cr}_2\text{O}_7^{\ 2-}(\text{aq}) + 14\text{H}^+(\text{aq}) + 6\text{e}^- \Longrightarrow 2\text{Cr}^{3+}(\text{aq}) + 7\text{H}_2\text{O}(1)$	+1.36
$F_2(g) + 2e^- \rightleftharpoons 2F^-(aq)$ +2.89	$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightleftharpoons Mn^{2+}(aq) + 4H_2O(1)$	+1.51
	$F_2(g) + 2e^- \rightleftharpoons 2F^-(aq)$	+2.89

GLUCOSE AND FRUCTOSE: STRAIGHT CHAIN AND lpha-ring forms

$$\begin{array}{c} \text{CHO} \\ \text{H}-\text{C}-\text{OH} \\ \text{HO}-\text{C}-\text{H} \\ \text{H}-\text{C}-\text{OH} \\ \text{H}-\text{C}-\text{OH} \\ \text{CH}_2\text{OH} \end{array} = \begin{array}{c} \text{CH}_2\text{OH} \\ \text{H} \\ \text{OH} \\ \text{H} \\ \text{OH} \end{array} \Rightarrow \begin{array}{c} \text{CH}_2\text{OH} \\ \text{H} \\ \text{OH} \\ \text{H} \\ \text{OH} \end{array}$$

straight chain D-glucose

 α -D-glucose

straight chain D-fructose

 α -D-fructose

COMMON AMINO ACIDS

Common name (symbol)	Structural formula	pH of isoelectric point	Common name (symbol)	Structural formula	pH of isoelectric point
Alanine (Ala)	H O	6.1	Arginine (Arg)	$\begin{array}{c} \text{H} \text{O} \\ \mid \mid \mid \\ \text{H}_2 \text{N} - \text{C} - \text{C} - \text{OH} \\ \mid $	10.7
Asparagine (Asn)	H O H ₂ N-C-C-OH CH ₂ C=O NH ₂	5.4	Aspartic acid (Asp)	H O H ₂ N-C-C-OH CH ₂ C=O OH	3.0
Cysteine (Cys)	H O H ₂ N-C-C-OH CH ₂ SH	5.1	Glutamic acid (Glu)	H O H ₂ N-C-C-OH CH ₂ CH ₂ C=O OH	3.2
Glutamine (Gln)	$\begin{array}{c} H & O \\ & \\ H_2N-C-C-OH \\ & CH_2 \\ & CH_2 \\ & C=O \\ & NH_2 \\ \end{array}$	5.7	Glycine (Gly)	Н О Н ₂ N—С—С—ОН Н	6.1

COMMON AMINO ACIDS (continued)

Common name (symbol)	Structural formula	pH of isoelectric point	Common name (symbol)	Structural formula	pH of isoelectric point
Histidine (His)	H O H ₂ N-C-C-OH CH ₂ N	7.6	Isoleucine (Ile)	H O H ₂ N-C-C-OH CHCH ₃ CH ₂ CH ₃	6.0
	H O H ₂ N-C-C-OH CH ₂ CHCH ₃ CH ₃		Lysine (Lys)	$\begin{array}{c} H & O \\ & \\ H_2N-C-C-C-OH \\ & CH_2 \\ & NH_2 \\ \end{array}$	9.7
Methionine (Met)	H O H ₂ N-C-C-OH CH ₂ CH ₂ CH ₂ CH ₃	5.7	Phenylalanine (Phe)	$\begin{array}{c} H & O \\ \mid & \mid \mid \\ H_2N-C-C-OH \\ \mid & CH_2 \\ \hline \end{array}$	5.7
Proline (Pro)	О С—ОН 	6.3	Serine (Ser)	$\begin{array}{c} \text{H} \text{O} \\ \mid \mid \mid \\ \text{H}_2 \text{N} - \text{C} - \text{C} - \text{OH} \\ \mid $	5.7

COMMON AMINO ACIDS (continued)

Common name (symbol)	Structural formula	pH of isoelectric point
Threonine (Thr)	H O H ₂ N—C—C—OH CHOH CH ₃	5.6
Tyrosine (Tyr)	$\begin{array}{c} H & O \\ I & \parallel \\ H_2N-C-C-OH \\ CH_2 \\ \hline \\ OH \end{array}$	5.7

Common name (symbol)	Structural formula	pH of isoelectric point
Tryptophan (Trp)	$\begin{array}{c} H & O \\ I & \parallel \\ H_2N-C-C-OH \\ CH_2 \\ HN \end{array}$	5.9
Valine (Val)	$\begin{array}{c} {\rm H} {\rm O} \\ {\rm I} {\rm II} \\ {\rm II} \\ {\rm N-C-C-OH} \\ {\rm I} \\ {\rm CHCH_3} \\ {\rm CH_3} \end{array}$	6.0

ACID-BASE INDICATORS

Name	pKa	pH range of colour change	Colour change (acidic to basic)
Methyl orange	3.7	3.1–4.4	red to yellow
Bromophenol blue	4.2	3.0-4.6	yellow to blue
Bromocresol green	4.7	3.8–5.4	yellow to blue
Methyl red	5.1	4.4-6.2	pink to yellow
Bromothymol blue	7.0	6.0–7.6	yellow to blue
Phenol red	7.9	6.8–8.4	yellow to red
Phenolphthalein	9.6	8.3–10.0	colourless to pink

INFRARED DATA

The table below shows the characteristic range of infrared absorption due to stretching in organic molecules.

Bond	Organic molecules	Wavelength (cm ⁻¹)
C–I	iodoalkanes	490–620
C–Br	bromoalkanes	500–600
C-Cl	chloroalkanes	600–800
C-F	fluoroalkanes	1000–1400
C-O	alcohol, ester	1050–1410
C=C	alkenes	1620–1680
C=O	aldehydes, carboxylic acid, ester, ketones	1700–1750
C≡C	alkynes	2100–2260
О–Н	carboxylic acids (hydrogen-bonded)	2500–3000
С-Н	alkanes, alkenes, alkynes, aldehydes, amides	2720–3100
О–Н	alcohol (hydrogen-bonded)	3200–3600
N–H	amines	3300–3500

FORMULAS AND CHARGES FOR COMMON POLYATOMIC IONS

Anions	
Acetate (ethanoate)	CH ₃ COO ⁻ or C ₂ H ₃ O ₂ ⁻
Carbonate	CO ₃ ²⁻
Chlorate	ClO ₃
Chlorite	ClO ₂
Chromate	CrO ₄ ²⁻
Citrate	C ₆ H ₅ O ₇ ³⁻
Cyanide	CN ⁻
Dichromate	Cr ₂ O ₇ ²⁻
Dihydrogen phosphate	H ₂ PO ₄
Hypochlorite	CIO ⁻
Hydrogen carbonate	HCO ₃
Hydrogen sulfate	HSO ₄
Hydrogen phosphate	HPO ₄ ²⁻
Hydroxide	OH ⁻
Nitrate	NO ₃
Nitrite	NO ₂
Perchlorate	ClO ₄
Permanganate	MnO ₄
Peroxide	O ₂ ²⁻
Phosphate	PO ₄ ³⁻
Sulfate	SO ₄ ²⁻
Sulfite	SO ₃ ²⁻
Thiosulfate	S ₂ O ₃ ²⁻

Cations	
Ammonium	NH ₄ ⁺
Hydronium	H ₃ O ⁺

REFERENCES

Aylward, Gordon & Findlay, Tristan (2008) *SI Chemical Data*, 6th ed, John Wiley & Sons, Brisbane. Haynes, William M (ed) (2016), *CRC Handbook of Chemistry and Physics*, 97th ed, CRC Press, Boca Raton, US.